105 research outputs found

    The body as image: image as body

    Get PDF
    Pain consultations are often contested spaces where patient and clinician compete for the roles of speaker. Often patients are searching for mechanical explanations and clinicians for psychological ones - creating an impasse and causing distress to both parties. Meanwhile, as technology advances and we have increasing means of seeing inside a person’s body we seem to have less and less ability to see inside another’s world – to understand what it means to live with pain, the significance of that pain for that individual in their social context. In this paper we explore the potential for images of pain, co-created with patients, to intervene in this unproductive patient dynamic and bring the full experience of pain - social, emotional, physical - into focus. Narrative analysis is used on a series of transcripts of pain consultations

    Magnetar giant flare high-energy emission

    Get PDF
    High energy (>250> 250 keV) emission has been detected persisting for several tens of seconds after the initial spike of magnetar giant flares. It has been conjectured that this emission might arise via inverse Compton scattering in a highly extended corona generated by super-Eddington outflows high up in the magnetosphere. In this paper we undertake a detailed examination of this model. We investigate the properties of the required scatterers, and whether the mechanism is consistent with the degree of pulsed emission observed in the tail of the giant flare. We conclude that the mechanism is consistent with current data, although the origin of the scattering population remains an open question. We propose an alternative picture in which the emission is closer to that star and is dominated by synchrotron radiation. The RHESSIRHESSI observations of the December 2004 flare modestly favor this latter picture. We assess the prospects for the Fermi Gamma-Ray Space Telescope to detect and characterize a similar high energy component in a future giant flare. Such a detection should help to resolve some of the outstanding issues.Comment: 20 pages, 14 figure

    Images as catalysts for meaning-making in medical pain encounters: a multidisciplinary analysis

    Get PDF
    The challenge for those treating or witnessing pain is to find a way of crossing the chasm of meaning between them and the person living with pain. This paper proposes that images can strengthen agency in the person with pain, particularly but not only in the clinical setting, and can create a shared space within which to negotiate meaning. It draws on multidisciplinary analyses of unique material resulting from two fine art/medical collaborations in London, UK, in which the invisible experience of pain was made visible in the form of co-created photographic images, which were then made available to other patients as a resource to use in specialist consultations. In parallel with the pain encounters it describes, the paper weaves together the insights of specialists from a range of disciplines whose methodologies and priorities sometimes conflict and sometimes intersect to make sense of each other’s findings. A short section of video footage where images were used in a pain consultation is examined in fine detail from the perspective of each discipline. The analysis shows how the images function as ‘transactional objects’ and how their use coincides with an increase in the amount of talk and emotional disclosure on the part of the patient and greater non-verbal affiliative behaviour on the part of the doctor. These findings are interpreted from the different disciplinary perspectives, to build a complex picture of the multifaceted, contradictory and paradoxical nature of pain experience, the drive to communicate it and the potential role of visual images in clinical settings

    Environmental Scanning and Knowledge Representation for the Detection of Organised Crime Threats

    Get PDF
    ePOOLICE aims at developing an efficient and effective strategic early warning system that utilises environmental scanning for the early warning and detection of current, emergent and future organised crime threats. Central to this concept is the use of environmental scanning to detect ‘weak signals’ in the external environment to monitor and identify emergent and future threats prior to their materialization into tangible criminal activity. This paper gives a brief overview of the application of textual concept extraction and categorization, and the Semantic Web technologies Formal Concept Analysis and Conceptual Graphs as part of the systems technological architecture, describing their benefits in aiding effective early warning

    An operational overview of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) Northeast Pacific field deployment

    Get PDF
    The goal of the EXport Processes in the Ocean from RemoTe Sensing (EXPORTS) field campaign is to develop a predictive understanding of the export, fate, and carbon cycle impacts of global ocean net primary production. To accomplish this goal, observations of export flux pathways, plankton community composition, food web processes, and optical, physical, and biogeochemical (BGC) properties are needed over a range of ecosystem states. Here we introduce the first EXPORTS field deployment to Ocean Station Papa in the Northeast Pacific Ocean during summer of 2018, providing context for other papers in this special collection. The experiment was conducted with two ships: a Process Ship, focused on ecological rates, BGC fluxes, temporal changes in food web, and BGC and optical properties, that followed an instrumented Lagrangian float; and a Survey Ship that sampled BGC and optical properties in spatial patterns around the Process Ship. An array of autonomous underwater assets provided measurements over a range of spatial and temporal scales, and partnering programs and remote sensing observations provided additional observational context. The oceanographic setting was typical of late-summer conditions at Ocean Station Papa: a shallow mixed layer, strong vertical and weak horizontal gradients in hydrographic properties, sluggish sub-inertial currents, elevated macronutrient concentrations and low phytoplankton abundances. Although nutrient concentrations were consistent with previous observations, mixed layer chlorophyll was lower than typically observed, resulting in a deeper euphotic zone. Analyses of surface layer temperature and salinity found three distinct surface water types, allowing for diagnosis of whether observed changes were spatial or temporal. The 2018 EXPORTS field deployment is among the most comprehensive biological pump studies ever conducted. A second deployment to the North Atlantic Ocean occurred in spring 2021, which will be followed by focused work on data synthesis and modeling using the entire EXPORTS data set

    Luminous Radio Emission from the Superluminous Supernova 2017ens at 3.3 Yr After Explosion

    Get PDF
    We present the results from a multiyear radio campaign of the superluminous supernova (SLSN) SN 2017ens, which yielded the earliest radio detection of an SLSN to date at the age of ∼3.3 yr after explosion. SN 2017ens was not detected at radio frequencies in the first ∼300 days but reached Lν ≈ 1028 erg s−1 cm−2 Hz−1 at ν ∼ 6 GHz, ∼1250 days post explosion. Interpreting the radio observations in the context of synchrotron radiation from the supernova shock interaction with the circumstellar medium (CSM), we infer an effective mass-loss rate Ṁ ≈ 10−4 M☉ yr−1 at r ∼ 1017 cm from the explosion\u27s site, for a wind speed of vw = 50–60 km s−1 as measured from optical spectra. These findings are consistent with the spectroscopic metamorphosis of SN 2017ens from hydrogen poor to hydrogen rich ∼190 days after explosion reported by Chen et al. SN 2017ens is thus an addition to the sample of hydrogen-poor massive progenitors that explode shortly after having lost their hydrogen envelope. The inferred circumstellar densities, implying a CSM mass up to ∼0.5 M☉, and low velocity of the ejection suggest that binary interactions (in the form of common-envelope evolution and subsequent envelope ejection) play a role in shaping the evolution of the stellar progenitors of SLSNe in the ≲ 500 yr preceding core collapse

    Late-Time Radio and Millimeter Observations of Superluminous Supernovae and Long Gamma Ray Bursts: Implications for Obscured Star Formation, Central Engines, and Fast Radio Bursts

    Full text link
    We present the largest and deepest late-time radio and millimeter survey to date of superluminous supernovae (SLSNe) and long duration gamma-ray bursts (LGRBs) to search for associated non-thermal synchrotron emission. Using the Karl G. Jansky Very Large Array (VLA) and the Atacama Large Millimeter/submillimeter Array (ALMA), we observed 43 sources at 6 and 100 GHz on a timescale of ∼1−19\sim 1 - 19 yr post-explosion. We do not detect radio/mm emission from any of the sources, with the exception of a 6 GHz detection of PTF10hgi (Eftekhari et al. 2019), as well as the detection of 6 GHz emission near the location of the SLSN PTF12dam, which we associate with its host galaxy. We use our data to place constraints on central engine emission due to magnetar wind nebulae and off-axis relativistic jets. We also explore non-relativistic emission from the SN ejecta, and place constraints on obscured star formation in the host galaxies. In addition, we conduct a search for fast radio bursts (FRBs) from some of the sources using VLA Phased-Array observations; no FRBs are detected to a limit of 1616 mJy (7σ7\sigma; 10 ms duration) in about 40 min on source per event. A comparison to theoretical models suggests that continued radio monitoring may lead to detections of persistent radio emission on timescales of ≳decade\gtrsim {\rm decade}.Comment: 30 pages; 12 figures; accepted to Ap
    • …
    corecore