16 research outputs found
Ferromagnetic Resonance Measurement Using a Novel Short Circuited Coaxial Probe Technique
A versatile technique to characterize the ferromagnetic resonance (FMR) of ferrite samples using a short circuited coaxial probe is presented. The technique has sensitivity comparable to that of well-established methods besides its non-contact nature, broadband and local. Detailed theoretical approach and simulation studies (Proof of Concept) using HFSS are presented. Microwave measurements on different single crystal and polycrystalline samples (Yttrium Iron Garnet (Y3Fe5O12) YIG and Nickel Ferrite (NiFe2O4) NFO have been performed. We measured the FMR response of these samples as a function of frequency and the data showed the expected variation for both in plane and out of plane magnetic fields
Ferromagnetic Resonance Measurement Using a Novel Short Circuited Coaxial Probe Technique
A versatile technique to characterize the ferromagnetic resonance (FMR) of ferrite samples using a short circuited coaxial probe is presented. The technique has sensitivity comparable to that of well-established methods besides its non-contact nature, broadband and local. Detailed theoretical approach and simulation studies (Proof of Concept) using HFSS are presented. Microwave measurements on different single crystal and polycrystalline samples (Yttrium Iron Garnet (Y3Fe5O12) YIG and Nickel Ferrite (NiFe2O4) NFO have been performed. We measured the FMR response of these samples as a function of frequency and the data showed the expected variation for both in plane and out of plane magnetic fields
Effect of the sulfur and fluorine concentration on physical properties of CdS films grown by chemical bath deposition
Undoped and F-doped CdS thin films were grown on glass slides by chemical bath deposition using thiourea, cadmium acetate and ammonium fluoride as sulfur, cadmium, and fluorine sources, respectively. Undoped CdS films were deposited varying the concentration of thiourea. Once the optimal thiourea concentration was determined, based on the crystalline quality of the samples, this concentration was maintained and ammonium fluoride was added at different concentrations in order to explore the effect of the F nominal concentration on properties of CdS films. Undoped and F-doped CdS films were characterized by X-ray diffraction, UV–Vis, room temperature photoluminescence, and four probe resistivity measurements. Results showed highly transparent F-doped CdS films with strong PL and low resistivity were obtained. Keywords: CdS films, F-doped CdS films, Chemical bath deposition, Optical properties, Room temperature photoluminescenc
Physical properties of CdTe:Cu films grown at low temperature by pulsed laser deposition
CdTe:Cu films were grown by pulsed laser deposition on Corning glass slides at a substrate temperature of 300�C. The thin films were grown using CdTe and Cu2Te powders, varying the Cu2Te concentration from 3 to 10wt. %. The structural, compositional, optical, and electrical properties were analyzed as a function of the nominal copper concentration. X-ray diffraction shows that films have CdTe cubic phase. The compositional analysis indicates that CdTe:Cu films grown with lower Cu content have Te excess, on the other hand, films with higher Cu content have Te deficiencies. The electrical measurements showed that CdTe:Cu films grown with low Cu content present lowest resistivity. � 2012 American Institute of Physics