165 research outputs found

    A Kind of Affine Weighted Moment Invariants

    Full text link
    A new kind of geometric invariants is proposed in this paper, which is called affine weighted moment invariant (AWMI). By combination of local affine differential invariants and a framework of global integral, they can more effectively extract features of images and help to increase the number of low-order invariants and to decrease the calculating cost. The experimental results show that AWMIs have good stability and distinguishability and achieve better results in image retrieval than traditional moment invariants. An extension to 3D is straightforward

    Pain education for adolescents and young adults living beyond cancer: An interdisciplinary meeting report

    Full text link
    © Copyright 2019, Mary Ann Liebert, Inc., publishers 2019. Pain is an understudied and undertreated consequence of cancer survival. Pain education is now a recommended treatment approach for persistent non-cancer pain, yet it has not been well applied to the context of adolescent and young adult (AYA) cancer survival. In March 2018, an interdisciplinary meeting was held in Adelaide, South Australia to set a research agenda for pain education in AYA cancer survivors. We identified that AYAs with persistent pain and those with heightened pain-related fear have the potential to benefit from pain education. We identified a number of unique challenges of engaging AYA survivors in pain education, and point towards future research directions

    Using honey to heal diabetic foot ulcers

    Get PDF
    Diabetic ulcers seem to be arrested in the inflammatory/proliferative stage of the healing process, allowing infection and inflammation to preclude healing. Antibiotic-resistant bacteria have become a major cause of infections, including diabetic foot infections. It is proposed here that the modern developments of an ancient and traditional treatment for wounds, dressing them with honey, provide the solution to the problem of getting diabetic ulcers to move on from the arrested state of healing. Honeys selected to have a high level of antibacterial activity have been shown to be very effective against antibiotic-resistant strains of bacteria in laboratory and clinical studies. The potent anti-inflammatory action of honey is also likely to play an important part in overcoming the impediment to healing that inflammation causes in diabetic ulcers, as is the antioxidant activity of honey. The action of honey in promotion of tissue regeneration through stimulation of angiogenesis and the growth of fibroblasts and epithelial cells, and its insulin-mimetic effect, would also be of benefit in stimulating the healing of diabetic ulcers. The availability of honey-impregnated dressings which conveniently hold honey in place on ulcers has provided a means of rapidly debriding ulcers and removing the bacterial burden so that good healing rates can be achieved with neuropathic ulcers. With ischemic ulcers, where healing cannot occur because of lack of tissue viability, these honey dressings keep the ulcers clean and prevent infection occurring

    CMB Telescopes and Optical Systems

    Full text link
    The cosmic microwave background radiation (CMB) is now firmly established as a fundamental and essential probe of the geometry, constituents, and birth of the Universe. The CMB is a potent observable because it can be measured with precision and accuracy. Just as importantly, theoretical models of the Universe can predict the characteristics of the CMB to high accuracy, and those predictions can be directly compared to observations. There are multiple aspects associated with making a precise measurement. In this review, we focus on optical components for the instrumentation used to measure the CMB polarization and temperature anisotropy. We begin with an overview of general considerations for CMB observations and discuss common concepts used in the community. We next consider a variety of alternatives available for a designer of a CMB telescope. Our discussion is guided by the ground and balloon-based instruments that have been implemented over the years. In the same vein, we compare the arc-minute resolution Atacama Cosmology Telescope (ACT) and the South Pole Telescope (SPT). CMB interferometers are presented briefly. We conclude with a comparison of the four CMB satellites, Relikt, COBE, WMAP, and Planck, to demonstrate a remarkable evolution in design, sensitivity, resolution, and complexity over the past thirty years.Comment: To appear in: Planets, Stars and Stellar Systems (PSSS), Volume 1: Telescopes and Instrumentatio

    Development of a lung slice preparation for recording ion channel activity in alveolar epithelial type I cells

    Get PDF
    BACKGROUND: Lung fluid balance in the healthy lung is dependent upon finely regulated vectorial transport of ions across the alveolar epithelium. Classically, the cellular locus of the major ion transport processes has been widely accepted to be the alveolar type II cell. Although evidence is now emerging to suggest that the alveolar type I cell might significantly contribute to the overall ion and fluid homeostasis of the lung, direct assessment of functional ion channels in type I cells has remained elusive. METHODS: Here we describe a development of a lung slice preparation that has allowed positive identification of alveolar type I cells within an intact and viable alveolar epithelium using living cell immunohistochemistry. RESULTS: This technique has allowed, for the first time, single ion channels of identified alveolar type I cells to be recorded using the cell-attached configuration of the patch-clamp technique. CONCLUSION: This exciting new development should facilitate the ascription of function to alveolar type I cells and allow us to integrate this cell type into the general model of alveolar ion and fluid balance in health and disease

    The quest for the solar g modes

    Full text link
    Solar gravity modes (or g modes) -- oscillations of the solar interior for which buoyancy acts as the restoring force -- have the potential to provide unprecedented inference on the structure and dynamics of the solar core, inference that is not possible with the well observed acoustic modes (or p modes). The high amplitude of the g-mode eigenfunctions in the core and the evanesence of the modes in the convection zone make the modes particularly sensitive to the physical and dynamical conditions in the core. Owing to the existence of the convection zone, the g modes have very low amplitudes at photospheric levels, which makes the modes extremely hard to detect. In this paper, we review the current state of play regarding attempts to detect g modes. We review the theory of g modes, including theoretical estimation of the g-mode frequencies, amplitudes and damping rates. Then we go on to discuss the techniques that have been used to try to detect g modes. We review results in the literature, and finish by looking to the future, and the potential advances that can be made -- from both data and data-analysis perspectives -- to give unambiguous detections of individual g modes. The review ends by concluding that, at the time of writing, there is indeed a consensus amongst the authors that there is currently no undisputed detection of solar g modes.Comment: 71 pages, 18 figures, accepted by Astronomy and Astrophysics Revie

    Choriocapillaris and Choroidal Microvasculature Imaging with Ultrahigh Speed OCT Angiography

    Get PDF
    We demonstrate in vivo choriocapillaris and choroidal microvasculature imaging in normal human subjects using optical coherence tomography (OCT). An ultrahigh speed swept source OCT prototype at 1060 nm wavelengths with a 400 kHz A-scan rate is developed for three-dimensional ultrahigh speed imaging of the posterior eye. OCT angiography is used to image three-dimensional vascular structure without the need for exogenous fluorophores by detecting erythrocyte motion contrast between OCT intensity cross-sectional images acquired rapidly and repeatedly from the same location on the retina. En face OCT angiograms of the choriocapillaris and choroidal vasculature are visualized by acquiring cross-sectional OCT angiograms volumetrically via raster scanning and segmenting the three-dimensional angiographic data at multiple depths below the retinal pigment epithelium (RPE). Fine microvasculature of the choriocapillaris, as well as tightly packed networks of feeding arterioles and draining venules, can be visualized at different en face depths. Panoramic ultra-wide field stitched OCT angiograms of the choriocapillaris spanning ~32 mm on the retina show distinct vascular structures at different fundus locations. Isolated smaller fields at the central fovea and ~6 mm nasal to the fovea at the depths of the choriocapillaris and Sattler's layer show vasculature structures consistent with established architectural morphology from histological and electron micrograph corrosion casting studies. Choriocapillaris imaging was performed in eight healthy volunteers with OCT angiograms successfully acquired from all subjects. These results demonstrate the feasibility of ultrahigh speed OCT for in vivo dye-free choriocapillaris and choroidal vasculature imaging, in addition to conventional structural imaging.National Institutes of Health (U.S.) (NIH R01-EY011289-27)National Institutes of Health (U.S.) (NIH R01-EY013178-12)National Institutes of Health (U.S.) (NIH R44-EY022864-01)National Institutes of Health (U.S.) (NIH R01-CA075289-16)United States. Air Force Office of Scientific Research (AFOSR FA9550-10-1-0551)United States. Air Force Office of Scientific Research (AFOSR FA9550-12-1-0499

    Affine differential geometry analysis of human arm movements

    Get PDF
    Humans interact with their environment through sensory information and motor actions. These interactions may be understood via the underlying geometry of both perception and action. While the motor space is typically considered by default to be Euclidean, persistent behavioral observations point to a different underlying geometric structure. These observed regularities include the “two-thirds power law” which connects path curvature with velocity, and “local isochrony” which prescribes the relation between movement time and its extent. Starting with these empirical observations, we have developed a mathematical framework based on differential geometry, Lie group theory and Cartan’s moving frame method for the analysis of human hand trajectories. We also use this method to identify possible motion primitives, i.e., elementary building blocks from which more complicated movements are constructed. We show that a natural geometric description of continuous repetitive hand trajectories is not Euclidean but equi-affine. Specifically, equi-affine velocity is piecewise constant along movement segments, and movement execution time for a given segment is proportional to its equi-affine arc-length. Using this mathematical framework, we then analyze experimentally recorded drawing movements. To examine movement segmentation and classification, the two fundamental equi-affine differential invariants—equi-affine arc-length and curvature are calculated for the recorded movements. We also discuss the possible role of conic sections, i.e., curves with constant equi-affine curvature, as motor primitives and focus in more detail on parabolas, the equi-affine geodesics. Finally, we explore possible schemes for the internal neural coding of motor commands by showing that the equi-affine framework is compatible with the common model of population coding of the hand velocity vector when combined with a simple assumption on its dynamics. We then discuss several alternative explanations for the role that the equi-affine metric may play in internal representations of motion perception and production

    Post-treatment skin reactions reported by cancer patients differ by race, not by treatment or expectations

    Get PDF
    Cancer patients may experience skin problems while undergoing chemotherapy and radiation therapy. Frequency of skin reactions may be influenced by skin pigmentation and psychological factors. A Symptom Inventory completed by 656 cancer patients nationwide before and after chemotherapy, radiation therapy, or chemotherapy plus radiation therapy was analysed to determine if treatment type, race (Black vs White), and pretreatment expectations influenced post-treatment skin reactions. Subsequent analysis of a local Symptom Inventory completed weekly for 5 weeks by 308 patients receiving radiation therapy examined severity of reported skin reactions. Significantly more patients receiving radiation therapy had stronger expectations of skin problems (62%) than patients receiving chemotherapy (40%, P=0.001) or chemotherapy plus radiation therapy (45%, P=0.003). Overall, expectations did not correlate with patient reported post-treatment skin problems in white (r=0.014, P=0.781) or black (r=0.021, P=0.936) patients. Although no significant difference was found between black and white patients in their pretreatment expectations of skin problems (P=0.32), black patients (10 out of 18, 56%) reported more skin problems than white patients (90 out of 393, 23%, P=0.001). Similarly, the local study showed that significantly more black patients (1 out of 5, 20%) reported severe skin reactions at the treatment site than white patients (12 out of 161, 8%). A direct correlation was observed between severity of skin problems and pain at the treatment site (r=0.541, P<0.001). Total radiation exposure did not significantly correlate with the report of skin problems at the treatment site for white or black patients. Overall, black patients reported more severe post-treatment skin problems than white patients. Our results suggest that symptom management for post-treatment skin reactions in cancer patients receiving radiation treatment could differ depending on their racial background
    corecore