9 research outputs found

    High cases of submicroscopic Plasmodium falciparum infections in a suburban population of Lagos, Nigeria.

    Get PDF
    BACKGROUND: Asymptomatic malaria parasites are significant sources of infections for onward malaria transmission. Conventional tools for malaria diagnosis such as microscopy and rapid diagnostic test kits (RDT) have relatively low sensitivity, hence the need for alternative tools for active screening of such low-density infections. METHODS: This study tested var acidic terminal sequence-based (varATS) quantitative polymerase chain reaction (qPCR) for screening asymptomatic Plasmodium falciparum infections among dwellers of a sub-urban community in Lagos, Nigeria. Clinically healthy participants were screened for malaria using microscopy, RDT and varATS qPCR techniques. Participants were stratified into three age groups: 1-5, 6-14 and > 14 years old. RESULTS: Of the 316 participants screened for asymptomatic malaria infection, 78 (24.68%) were positive by microscopy, 99 (31.33%) were positive by RDT and 112 (35.44%) by varATS qPCR. Participants aged 6-14 years had the highest prevalence of asymptomatic malaria, with geometric means of ~ 116 parasites/µL and ~ 6689 parasites/µL as detected by microscopy and varATS, respectively. CONCLUSION: This study has revealed high prevalence of asymptomatic malaria in the study population, with varATS detecting additional sub-microscopic infections. The highest concentration of asymptomatic malaria was observed among school-age children between 6 and 14 years old. A large-scale screening to identify other potential hotspots of asymptomatic parasites in the country is recommended

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Pro-inflammatory Cytokine Response and Genetic Diversity in Merozoite Surface Protein 2 of Plasmodium falciparum Isolates from Nigeria

    No full text
    Background: Polymorphisms in Plasmodium falciparum merozoite surface protein-2 (msp-2) and associated parasite genetic diversity which varies between malaria-endemic regions remain a limitation in malaria vaccine development. Pro-inflammatory cytokines are important in immunity against malaria, understanding the influence of genetic diversity on cytokine response is important for effective vaccine design. Methods: P. falciparum isolates obtained from 300 Nigerians with uncomplicated falciparum malaria at Ijede General Hospital, Ijede (IJE), General Hospital Ajeromi, Ajeromi (AJE) and Saint Kizito Mission Hospital, Lekki, were genotyped by nested polymerase chain reaction of msp-2 block 3 while ELISA was used to determine the pro-inflammatory cytokine response to describe the genetic diversity of P. falciparum. Results: Eighteen alleles were observed for msp-2 loci. Of the 195 isolates, 61 (31.0%) had only FC27-type alleles, 38 (19.7%) had only 3D7-type alleles, and 49.3% had multiple parasite lines with both alleles. Band sizes were 275–625 bp for FC27 and 150–425 bp for 3D7. Four alleles were observed from LEK, 2 (375–425 bp) and 2 (275–325 bp) of FC27-and 3D7-types, respectively; 12 alleles from AJE, 9 (275–625 bp) and 3 (325–425 bp) of FC27-types and 3D7-types, respectively; while IJE had a total of 12 alleles, 9 (275–625 bp) and 3 (325–425 bp) of FC27-types and 3D7-types, respectively. Mean multiplicity of infection (MOI) was 1.54. Heterozygosity (HE) ranged from 0.77 to 0.87 and was highest for IJE (0.87). Cytokine response was higher among 0.05) but with neither parasite density nor infection type. Conclusion: P. falciparum genetic diversity is extensive in Nigeria, protection via pro-inflammatory cytokines have little or no interplay with infection multiplicity

    Genetic diversity and complexity of Plasmodium falciparum infections in Lagos, Nigeria

    No full text
    Objective: To analyse the genetic diversity of Plasmodium falciparum (P. falciparum) using msp-1 and msp-2 as antigenic markers. Methods: Parasite DNA was extracted from 100 blood samples collected from P. falciparum-positive patients confirmed by microscopy, and followed by PCR-genotyping targeting the msp-1 (block2) and msp-2 (block 3) allelic families. Results: All the families of msp-1 (K1, MAD20 and R033) and msp-2 (FC27 and 3D7) locus were observed. Results revealed that K1 (60/100) was the most predominant genotype of msp-1 allelic family followed by the genotypes of MAD20 (50/100) and R033 (45/100). In the msp-2 locus, FC27 genotype (62/100) showed higher frequency than 3D7 genotype (55/100). The allelic families were detected either alone or in combination with other families. However, no R033/MAD20 combination was observed. Multiplicity of infection (MOI) with msp-1 was higher in the locality of Ikorodu (1.50) than in Lekki (1.39). However, MOI with msp-2 was lower in the locality of Ikorodu (1.14) than in Lekki (1.76). There was no significant difference in the mean MOI between the two study areas (P=0.427). Conclusions: The observation of limited diversity of malaria parasites may imply that the use of antigenic markers as genotyping tools for distinguishing recrudescence and re-infections with P. falciparum during drug trials is subjective

    Baseline prevalence of molecular marker of sulfadoxine/pyrimethamine resistance in Ebonyi and Osun states, Nigeria: amplicon deep sequencing of dhps-540.

    Get PDF
    BACKGROUND: Chemoprevention plays an important role in malaria control strategy. Perennial malaria chemoprevention (PMC) using sulfadoxine/pyrimethamine (SP) is a WHO-approved strategy to combat malaria in young children and may lead to drug pressure. Introducing SP-PMC may therefore be compromised due to the emergence of Plasmodium falciparum resistant to SP, particularly mutation at K540E of the dihydropteroate synthase (dhps) gene. Molecular surveillance of resistance markers can support assessment of antimalarial efficacy and effectiveness. High prevalence of 540E is associated with reduced effectiveness of SP, and areas with more than 50% prevalence are considered unsuitable for intermittent preventative treatment in pregnancy (IPTp) implementation. Assessing 540E prevalence is an important undertaking before implementation of SP-PMC. METHODS: We conducted a rapid surveillance of dhps-540E to assess the suitability of SP as PMC in field studies from Ebonyi and Osun states in Nigeria. We used an in-house developed amplicon deep-sequencing method targeting part of the dhps gene. RESULTS: Our data reveal that 18.56% of individuals evaluated carried the 540E mutation mixed with the WT K540. Mutant variant 540E alone was not found, and 80% of isolates harboured only WT (K540). Clonal analysis of the sequencing data shows a very low proportion of 540E circulating in both states. CONCLUSIONS: Our data show that both states are suitable for SP-PMC implementation and, based on this finding, SP-PMC was implemented in Osun in 2022. Continuous monitoring of 540E will be required to ensure the chemoprevention effectiveness of SP in Nigeria

    Genetic polymorphisms in malaria vaccine candidate Plasmodium falciparum reticulocyte-binding protein homologue-5 among populations in Lagos, Nigeria

    No full text
    Abstract Background Vaccines are the most reliable alternative to elicit sterile immunity against malaria but their development has been hindered by polymorphisms and strain-specificity in previously studied antigens. New vaccine candidates are therefore urgently needed. Highly conserved Plasmodium falciparum reticulocyte-binding protein homologue-5 (PfRH5) has been identified as a potential candidate for anti-disease vaccine development. PfRH5 is essential for erythrocyte invasion by merozoites and crucial for parasite survival. However, there is paucity of data on the extent of genetic variations on PfRH5 in field isolates of Plasmodium falciparum. This study described genetic polymorphisms at the high affinity binding polypeptides (HABPs) 36718, 36727, 36728 of PfRH5 in Nigerian isolates of P. falciparum. This study tested the hypothesis that only specific conserved B and T cell epitopes on PfRH5 HABPs are crucial for vaccine development. Methods One hundred and ninety-five microscopically confirmed P. falciparum samples collected in a prospective cross-sectional study of three different populations in Lagos, Nigeria. Genetic diversity and haplotype construct of Pfrh5 gene were determined using bi-directional sequencing approach. Tajima’s D and the ratio of nonsynonymous vs synonymous mutations were utilized to estimate the extent of balancing and directional selection in the pfrh5 gene. Results Sequence analysis revealed three haplotypes of PfRH5 with negative Tajima’s D and dN/dS value of − 1.717 and 0.011 ± 0.020, respectively. A single nucleotide polymorphism, SNP (G → A) at position 608 was observed, which resulted in a change of the amino acid cysteine at position 203 to tyrosine. Haplotype and nucleotide diversities were 0.318 ± 0.016 and 0.0046 ± 0.0001 while inter-population genetic differentiation ranged from 0.007 to 0.037. Five polypeptide variants were identified, the most frequent being KTKYH with a frequency of 51.3%. One B-cell epitope, 151 major histocompatibility complex (MHC) class II T-cell epitopes, four intrinsically unstructured regions (IURs) and six MHC class I T-cell epitopes were observed in the study. Phylogenetic analysis of the sequences showed clustering and evidence of evolutionary relationship with 3D7, PAS-2 and FCB-2 RH5 sequences. Conclusions This study has revealed low level of genetic polymorphisms in PfRH5 antigen with B- and T-cell epitopes in intrinsically unstructured regions along the PfRH5 gene in Lagos, Nigeria. A broader investigation is however required in other parts of the country to support the possible inclusion of PfRH5 in a cross-protective multi-component vaccine

    Genetic polymorphisms in malaria vaccine candidate Plasmodium falciparum reticulocyte-binding protein homologue-5 among populations in Lagos, Nigeria

    No full text
    Abstract Background Vaccines are the most reliable alternative to elicit sterile immunity against malaria but their development has been hindered by polymorphisms and strain-specificity in previously studied antigens. New vaccine candidates are therefore urgently needed. Highly conserved Plasmodium falciparum reticulocyte-binding protein homologue-5 (PfRH5) has been identified as a potential candidate for anti-disease vaccine development. PfRH5 is essential for erythrocyte invasion by merozoites and crucial for parasite survival. However, there is paucity of data on the extent of genetic variations on PfRH5 in field isolates of Plasmodium falciparum. This study described genetic polymorphisms at the high affinity binding polypeptides (HABPs) 36718, 36727, 36728 of PfRH5 in Nigerian isolates of P. falciparum. This study tested the hypothesis that only specific conserved B and T cell epitopes on PfRH5 HABPs are crucial for vaccine development. Methods One hundred and ninety-five microscopically confirmed P. falciparum samples collected in a prospective cross-sectional study of three different populations in Lagos, Nigeria. Genetic diversity and haplotype construct of Pfrh5 gene were determined using bi-directional sequencing approach. Tajima’s D and the ratio of nonsynonymous vs synonymous mutations were utilized to estimate the extent of balancing and directional selection in the pfrh5 gene. Results Sequence analysis revealed three haplotypes of PfRH5 with negative Tajima’s D and dN/dS value of − 1.717 and 0.011 ± 0.020, respectively. A single nucleotide polymorphism, SNP (G → A) at position 608 was observed, which resulted in a change of the amino acid cysteine at position 203 to tyrosine. Haplotype and nucleotide diversities were 0.318 ± 0.016 and 0.0046 ± 0.0001 while inter-population genetic differentiation ranged from 0.007 to 0.037. Five polypeptide variants were identified, the most frequent being KTKYH with a frequency of 51.3%. One B-cell epitope, 151 major histocompatibility complex (MHC) class II T-cell epitopes, four intrinsically unstructured regions (IURs) and six MHC class I T-cell epitopes were observed in the study. Phylogenetic analysis of the sequences showed clustering and evidence of evolutionary relationship with 3D7, PAS-2 and FCB-2 RH5 sequences. Conclusions This study has revealed low level of genetic polymorphisms in PfRH5 antigen with B- and T-cell epitopes in intrinsically unstructured regions along the PfRH5 gene in Lagos, Nigeria. A broader investigation is however required in other parts of the country to support the possible inclusion of PfRH5 in a cross-protective multi-component vaccine
    corecore