8 research outputs found

    Serine biosynthesis with one carbon catabolism represents a novel pathway for ATP generation in cells using alternative glycolysis with zero net ATP production

    Get PDF
    Recent experimental evidence indicates that some cancer cells have an alternative glycolysis pathway with net zero ATP production, implying that upregulation of glycolysis in these cells may not be related to the generation of ATP. Here we use a genome-scale model of human cell metabolism to investigate the potential metabolic alterations in cells using net zero ATP glycolysis. We uncover a novel pathway for ATP generation that involves reactions from the serine biosynthesis and one-carbon metabolism pathways. This pathway has a predicted two-fold higher flux rate in cells using net zero ATP glycolysis than those using standard glycolysis and generates twice as much ATP with significantly lower rate of lactate- but higher rate of alanine secretion. Thus, in cells using the standard- or the net zero ATP glycolysis pathways a significant portion of the glycolysis flux is always associated with ATP generation, and the ratio between the flux rates of the two pathways determines the rate of ATP generation and lactate and alanine secretion during glycolysis

    Serine biosynthesis with one carbon catabolism represents a novel pathway for ATP generation in cells using alternative glycolysis with zero net ATP production

    Get PDF
    Recent experimental evidence indicates that some cancer cells have an alternative glycolysis pathway with net zero ATP production, implying that upregulation of glycolysis in these cells may not be related to the generation of ATP. Here we use a genome-scale model of human cell metabolism to investigate the potential metabolic alterations in cells using net zero ATP glycolysis. We uncover a novel pathway for ATP generation that involves reactions from the serine biosynthesis and one-carbon metabolism pathways. This pathway has a predicted two-fold higher flux rate in cells using net zero ATP glycolysis than those using standard glycolysis and generates twice as much ATP with significantly lower rate of lactate- but higher rate of alanine secretion. Thus, in cells using the standard- or the net zero ATP glycolysis pathways a significant portion of the glycolysis flux is always associated with ATP generation, and the ratio between the flux rates of the two pathways determines the rate of ATP generation and lactate and alanine secretion during glycolysis

    Quantitative assessment of cell fate decision between autophagy and apoptosis

    Get PDF
    Abstract Autophagy and apoptosis are cellular processes that regulate cell survival and death, the former by eliminating dysfunctional components in the cell, the latter by programmed cell death. Stress signals can induce either process, and it is unclear how cells ‘assess’ cellular damage and make a ‘life’ or ‘death’ decision upon activating autophagy or apoptosis. A computational model of coupled apoptosis and autophagy is built here to analyze the underlying signaling and regulatory network dynamics. The model explains the experimentally observed differential deployment of autophagy and apoptosis in response to various stress signals. Autophagic response dominates at low-to-moderate stress; whereas the response shifts from autophagy (graded activation) to apoptosis (switch-like activation) with increasing stress intensity. The model reveals that cytoplasmic Ca2+ acts as a rheostat that fine-tunes autophagic and apoptotic responses. A G-protein signaling-mediated feedback loop maintains cytoplasmic Ca2+ level, which in turn governs autophagic response through an AMP-activated protein kinase (AMPK)-mediated feedforward loop. Ca2+/calmodulin-dependent kinase kinase β (CaMKKβ) emerges as a determinant of the competing roles of cytoplasmic Ca2+ in autophagy regulation. The study demonstrates that the proposed model can be advantageously used for interrogating cell regulation events and developing pharmacological strategies for modulating cell decisions

    Impact of limited solvent capacity on metabolic rate, enzyme activities, and metabolite concentrations of S. cerevisiae glycolysis.

    Get PDF
    The cell's cytoplasm is crowded by its various molecular components, resulting in a limited solvent capacity for the allocation of new proteins, thus constraining various cellular processes such as metabolism. Here we study the impact of the limited solvent capacity constraint on the metabolic rate, enzyme activities, and metabolite concentrations using a computational model of Saccharomyces cerevisiae glycolysis as a case study. We show that given the limited solvent capacity constraint, the optimal enzyme activities and the metabolite concentrations necessary to achieve a maximum rate of glycolysis are in agreement with their experimentally measured values. Furthermore, the predicted maximum glycolytic rate determined by the solvent capacity constraint is close to that measured in vivo. These results indicate that the limited solvent capacity is a relevant constraint acting on S. cerevisiae at physiological growth conditions, and that a full kinetic model together with the limited solvent capacity constraint can be used to predict both metabolite concentrations and enzyme activities in vivo
    corecore