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Abstract 

Recent experimental evidence indicates that some cancer cells have an alternative 

glycolysis pathway with net zero ATP production, implying that upregulation of 

glycolysis in these cells may not be related to the generation of ATP. Here we use a 

genome-scale model of human cell metabolism to investigate the potential metabolic 

alterations in cells using net zero ATP glycolysis. We uncover a novel pathway for ATP 

generation that involves reactions from the serine biosynthesis and one-carbon 

metabolism pathways. This pathway has a predicted two-fold higher flux rate in cells 

using net zero ATP glycolysis than those using standard glycolysis and generates twice as 

much ATP with significantly lower rate of lactate- but higher rate of alanine secretion. 

Thus, in cells using the standard- or the net zero ATP glycolysis pathways a significant 

portion of the glycolysis flux is always associated with ATP generation, and the ratio 

between the flux rates of the two pathways determines the rate of ATP generation and 

lactate and alanine secretion during glycolysis. 
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Introduction 

Oxidative phosphorylation (OxPhos) in the mitochondria is the major pathway for 

ATP generation in normal cells under normal oxygen conditions (normoxia), generating 

32 mole of ATP per mole of glucose [1]. In contrast, under conditions of oxygen 

limitation (hypoxia), the mitochondrial activity is down-regulated and cells switch to 

glycolysis for ATP generation that yields only 2 mole of ATP per mole of glucose. 

Surprisingly, as first observed by Warburg [2], the metabolism of cancer cells is 

frequently characterized by a significant upregulation of glycolysis even under normoxic 

conditions, with both an increased glucose uptake and excretion of lactate (Warburg 

effect). More recently, it became evident that the Warburg effect is not unique to cancer 

cells alone. Indeed, both rapidly proliferating normal cells [3,4,5,6,7,8] and non-

proliferating cells with high metabolic activity [9,10,11] display high levels of glycolysis 

with lactate excretion under normoxic conditions. 

Despite the importance of OxPhos and aerobic glycolysis in ATP generation, more 

recent empirical evidence indicates that some cancer cells also utilize an alternative 

glycolysis pathway with net zero ATP generation [12]. This striking observation implies 

a physiological role for aerobic glycolysis other than ATP generation. One such role may 

be the capacity of glycolysis to fulfill the need of rapidly proliferating cells for precursor 

metabolites. However, it has been shown previously that the need for precursor 

metabolites in itself is not sufficient to explain the high glycolysis rates observed in 

proliferating cells [13,14]. Instead, molecular crowding and its resulting constraint on 

macromolecular concentrations is the key factor determining the Warburg effect [14,15]. 

The high density of macromolecules in the cell imposes limits on the total mitochondrial 

content per unit of cell volume and the total content of metabolic enzymes as well. In 

turn, the inherent limitation in mitochondrial density results in an upper bound on the 

maximum achievable OxPhos capacity. We have shown previously that this maximum is 

achieved at physiological conditions and that it results in a metabolic switch involving an 

upregulation of glycolysis and lactate excretion [14,15]. Yet, all these results were 

obtained making use of the standard glycolysis pathway, with a yield of 2 moles of ATP 

per mole of glucose. 

Here we investigate the metabolic flux redistributions in proliferating cells that utilize 

the alternative glycolysis pathway with net zero ATP production [11]. To this end we 

improve on our previous flux balance model of human cell metabolism [14] by more 

precisely accounting for protein synthesis, including a self-consistent constraint that all 

ribosomal-, enzyme associated-, and non-metabolic proteins need to be accounted for by 

the rate of protein synthesis, which is proportional to the ribosomal density. We also 

make a more precise accounting of the molecular crowding constraint by considering 

mitochondria as a subcellular compartment independent from the cytosol. Using this 

model we uncover a novel pathway for ATP generation that involves reactions in the 

serine biosynthesis and one-carbon metabolism pathways. The flux rate of this pathway is 

predicted to be two-fold higher in cells with net zero ATP glycolysis relative to cells with 

the standard glycolysis. Furthermore, it accounts for most of the glycolysis rate in cells 

with net zero ATP glycolysis.  
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Results 

Flux balance model of cell metabolism with molecular crowding constraint 

As starting point, we utilize a genome-scale metabolic reconstruction of a generic 

human cell [16] that includes most biochemical reactions catalyzed by enzymes encoded 

in the human genome. We add auxiliary reactions to represent nutrient uptake, excretion 

of metabolic byproducts, basal ATP demand needed for cell maintenance, basal rate of 

protein degradation, synthesis of cell biomass components (proteins, lipids, RNA and 

DNA) and cell proliferation (biomass components ! cell) (Table S1, 

http://cinjweb.umdnj.edu/~vazqueal/fba_human.html). We assume that the cell is in a 

steady state where the production and consumption of every metabolite and 

macromolecules balances, known as the flux balance constraint [17]. We use fi to denote 

the steady state reaction rate (flux) of the i-th reaction in the metabolic network, where all 

reversible reactions are represented by a forward and backward rate, respectively. We use 

!c to denote the relative cell volume fraction occupied by the c-th cellular compartment, 

where a compartment represents the overall contribution of macromolecules of certain 

type (e.g., ribosomes) or of certain cell organelle (e.g., mitochondria). Specifically, here 

we consider proteins that do not form part of enzyme complexes or ribosomes (P0) and 

nutrients uptake systems (NU), all metabolic enzymes catalyzing reactions outside the 

mitochondria (EnM), all metabolic enzymes catalyzing reactions in the mitochondria 

(EM), ribosomes (R), and mitochondria (M). We assume the proliferation rate (µ) and the 

total relative volume fraction occupied by macromolecules and organelles (!max) are 

known and are given as input parameters of the model. Finally, we estimate the metabolic 

fluxes and compartment densities as the solution of the following optimization problem:  

Find the fi and !c that minimize the sum of nutrient uptake rates 

(1) "i|NU fi 

subject to the metabolic constraints 

(2) "i Smi fi = 0  flux balance constraints 

(3) vi,min # fi  # vi,max minimum/maximum flux constraints 

(4) 0 # !c # !max  minimum/maximum volume fraction constraints 

(5) "i|EnM ai fi  # !EnM molecular crowding constraints 

 "i|EM ai fi  # !M 

 aR fprotein_synthesis # !R 

 aM,ATP fATP_synthase # !M 

 !P0 + !EnM
 
+ !R + !M # !max 

where Smi is the stoichiometric coefficient of metabolite m in reaction i, ai=vi/keff,i are the 

crowding coefficients of metabolic enzymes (enzyme molar volume / enzyme effective 

turnover)[18], aR=vR/kR is the ribosome crowding coefficient (ribosome molar volume / 

protein synthesis rate per ribosome), and aM,ATP=vs,M/rM the crowding coefficient of 
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mitochondria ATP generation (ATP synthesis rate per mitochondria mass / mitochondria 

specific volume) [14,15]. 

The estimation of all the model parameters is presented in the Methods section. Here 

we discuss some of them that deserve particular attention. The effective turnover 

numbers keff,i, quantify the reaction rate per enzyme molecule. For example, for an 

irreversible single substrate reaction satisfying Michaelis-Menten kinetics, keff=kS/(K+S), 

where k is the enzyme turnover number, K the half-saturation concentration and S the 

substrate concentration. The turnover numbers of some human enzymes are reported in 

the BRENDA database [19]. They have a typical value of 10 sec
-1

 and a significant 

variation from 1 to 100 sec
-1

 (Table S2, 

http://cinjweb.umdnj.edu/~vazqueal/fba_human.html). However, for most reactions we 

do not know the turnover number, the kinetic model, or the metabolite concentrations, 

impeding us to estimate keff. To cope with this indeterminacy we performed a sampling 

strategy, whereby the keff,i were sampled from a reasonable range of values, and then 

focused on the predicted average behavior and 90% confidence intervals. The typical 

enzyme crowding coefficient is about ai~0.00013 (mM/min)
-1

, which is interpreted as 

follows: to maintain a reaction rate of 1 mM/min we need to allocate a relative cell 

volume of 0.00013 (0.013%) for the corresponding enzyme. The crowding coefficients 

are significantly larger for ribosomes and the mitochondria: aR=3.6 (mM/min)
-1

 and 

aM,ATP=0.017 (mM/min)
-1

, respectively. 

The flux balance equation for proteins (equation (2) with m=proteins) is formulated 

more generally than before. Previous models have assumed a constant protein 

concentration and have not taken into account the self-consistent need to synthesize all 

the proteins in enzyme complexes and ribosomes [13,14]. In contrast, here we account for 

three major categories, proteins not associated with metabolism, proteins that are 

components of enzyme complexes, and ribosomal proteins, with their concentrations 

(moles/cell volume) denoted by P0, PE, and PR, respectively. In proliferating cells, these 

concentrations will decrease at a rate (µ+kD)(P0+PE+PR), where µ denotes the 

proliferation rate and kD the basal rate of protein turnover. The total concentration of 

proteins in enzyme complexes can be estimated as PE=nPEE=nPE"ifi/keff,i, where nPE is the 

average number of proteins in an enzyme complex (about 2.4) and E is the total 

concentration of metabolic enzymes. Similarly, PR=nPR!R/vR, where nPR is the number of 

proteins in a ribosome (82 for the 80S ribosomes) and !R/vR is the concentration of 

ribosomes. Putting all these elements together, the balance between protein turnover and 

synthesis implies fProtein_sysnthesis=(µ+kD)[P0+ nPE"i(fi/keff,i) + (nPR/vR)!R], where the term 

(µ+kD)P0 is the only one considered in previous models [13,14,17]. In an effective 

manner, each metabolic reaction contributes to a component of protein synthesis, with a 

stoichiometric coefficient (µ+kD)nPE/keff,i, quantifying the amount of protein necessary to 

keep the concentration of the corresponding enzyme constant. Similarly, a constant 

ribosome volume fraction also accounts for a component of protein synthesis, with a 

stoichiometric coefficient (µ+kD)nPR/vR, quantifying the amount of protein necessary to 

keep the ribosomes concentration constant. The rate of protein synthesis accounting for 

this effective protein dilution/degradation thus models the autocatalytic nature of cell 
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metabolism, whereby the macromolecular complexes catalyzing the metabolic reactions 

ultimately are themselves a product of metabolism. 

To model the alternative glycolysis pathway we replaced the pyruvate kinase 

catalyzed reaction: Phosphoenolpyruvate + ADP + H
+
 ! Pyruvate + ATP, by the ATP 

independent reaction: Phosphoenolpyruvate + H
+
 ! Pyruvate + Phosphate. In the latter 

reaction phoshoglycerate mutase (PGM1) is the phosphate acceptor, which is then 

dephosphorylated by a yet unknown mechanism [12]. 

 

Changes in the relative macromolecular densities with increased cell proliferation 

Figure 1 shows the predicted relative volume fraction occupied by non-mitochondrial 

enzymes (!EnM="i|EnMaifi), mitochondria (!M), and ribosomes (!R) as a function of the 

proliferation rate for cells growing in a medium containing glucose, glutamine, essential 

amino acids, and oxygen. The ribosomal density increases monotonically with increasing 

the proliferation rate in a nonlinear fashion, reaching a maximum of 10% of the cell 

volume at the highest proliferation rate of about 3/day (minimum doubling time of 

ln(2)/µmax=5.5 hours) (Fig. 1, blue circles). At low proliferation rates, the mitochondrial 

density exhibits a wide range of values, overall occupying ~ 20% of the cell volume, and 

initially it increases with increasing the proliferation rate (Fig. 1, green triangles). 

However, beyond a proliferation rate of about 0.8/day (doubling time 21 hours), the 

mitochondrial density decreases with increasing the proliferation rate. This is in turn 

accompanied by a dramatic increase in the density of metabolic enzymes (Fig. 1, red 

squares). Our model thus predicts that when switching from low to high proliferation 

rates, the cell makes a transition from a mitochondria dominated molecular crowding 

regime to one dominated by enzymes + ribosomes (Fig. 1). 

The impact of altering the different model parameters used on the behavior of the 

model can also be tested. Larger values of the mitochondrial crowding coefficient aM, 

e.g., due to a decrease in mitochondrial efficiency for ATP generation, will cause a 

decrease of mitochondrial density at lower proliferation rates. Larger ribosome crowding 

coefficient aR, e.g., due to a decrease in protein synthesis efficiency, will result in a faster 

increase of the ribosome density with increasing the proliferation rate, and a consequently 

faster decrease of the mitochondria density. Similarly, an increase in the average 

crowding coefficient of metabolic enzymes will cause a faster increase of the total 

enzyme concentration with increasing the proliferation, resulting in a faster decrease of 

the mitochondrial density as well. Cancer cells are characterized by partial alterations in 

all of these components, potentially resulting in a more dramatic effect than that depicted 

in Figure 1. In particular, mutations leading to damaged mitochondria will enhance the 

effect, as originally hypothesized by Warburg [2]. 

 

Metabolic switch from low- to high proliferation rates 

The predicted transition in the macromolecular composition of the cell is 

accompanied by a global switch in the cell’s metabolic state (Fig. 2). At the proliferation 

rate of about 0.8/day (doubling time 21 hours) the model predicts a substantial increase in 
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glucose uptake, sudden activation of glutamine uptake and $-ketoglutarate 

dehydrogenase activity, complete deactivation of pyruvate decarboxylase (PCm) and 

activation of the enzyme, pyruvate dehydrogenase (PDHm). The activity of pyruvate 

carboxylase in the low proliferation regime, where there is no glutamine uptake, is 

consistent with recent experimental data showing that pyruvate carboxylase is needed for 

growth without glutamine [20]. The activation of glutamine uptake at high proliferation 

rates is also  in agreement with what have been observed experimentally [21]. We also 

observe activation of lactate excretion at high proliferation rates, the hallmark of the 

Warburg effect. 

Several notable changes take place around the pyruvate branching point (Fig. 2). 

Most noticeably, the glycolysis pathway (Fig. 2) is truncated at 3-phosphoglycerate and 

the flux over the ATP-decoupled pyruvate kinase-catalyzed reaction is zero at all 

proliferation rates. We emphasize that we have not imposed a zero flux over this reaction, 

and the zero flux is a prediction of the model itself. Tryptophan is a source of pyruvate at 

low proliferation rates, with alanine as an intermediate metabolite (Fig. 2, tryptophan to 

pyruvate route, dashed lines). Alanine is converted to pyruvate by alanine transaminase, 

with concomitant transformation of $-ketoglutarate to glutamate. However, at high 

proliferation rates this reaction is reverted, producing alanine instead, which is then 

excreted. At high proliferation rates pyruvate is instead generated from glutamine (via 

malate). The cytosolic- (LDH-L) and mitochondrial L-lactate dehydrogenases (LDH-Lm) 

form a cycle between pyruvate and lactate. At low proliferation rates, LDH-Lm converts 

pyruvate to lactate and LDH-L converts lactate back to pyruvate, both reactions working 

at the same rate (Fig. 2, pyruvate-lactate loop, dashed lines). At high proliferation rates 

the cycle is reverted, LDH-L converting lactate to pyruvate and LDH-Lm pyruvate back 

to lactate (Fig. 2, pyruvate-lactate loop, solid lines). In the latter case the LDH-Lm 

catalyzed reaction has a higher rate, resulting in the net production of lactate, which is 

then excreted. 

To provide evidence that the metabolic switch is a direct consequence of the 

molecular crowding constraint, we repeated the in silico analysis after removing this 

constraint (mathematically setting !max=% in equation (5)). Inspecting the changes in the 

reaction rates we observe that the metabolic switch it lost. The glucose uptake increases 

monotonically with increasing the proliferation rate (Fig. S1), but it does not manifest the 

same high rate of increase as with the molecular crowding constraint in place (Fig. 2). 

Furthermore, there is no lactate excretion at any proliferation rate (Fig. S1). 

 

Novel pathway for ATP generation 

When considering the molecular crowding constraint, our simulations show that at 

high proliferation rates most of the glycolysis rate is diverted towards the biosynthesis of 

serine (Fig. 2).  However, this flux rate exceeds by more than 10 fold the serine 

requirements for protein synthesis (Fig. 2, serine to protein synthesis, top center panel). 

Therefore, we hypothesized that cells utilizing the net zero ATP glycolysis may 

overexpress some alternative pathway for ATP generation. To test this hypothesis we 

inspected the genome-scale reaction rate predictions, focusing on reactions producing 

ATP. Following this approach we identified the reactions with high rates of ATP 
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production in cells with a net zero ATP glycolysis at different proliferation rates. At low 

proliferation rates (0.03/day, doubling time 24 days) ATP synthase was the dominant 

reaction, supplying most of the ATP required for cell maintenance (Fig. 3a,b, left panels). 

On the other hand, at high proliferations rates (2.52/day, doubling time 6.6 hours) the 

formate-tetrahydrofolate ligase (FTHFL), working in the reverse direction to form ATP, 

is the dominant reaction (Fig. 3a, right panel). Formate-tetrahydrofolate ligase is also 

active in cells with the standard glycolysis (Fig. 3b, right panel). However, in the case of 

standard glycolysis phosphoglycerate kinase and pyruvate kinase are the dominant 

reactions at high proliferation rates (Fig. 3b, right panel). 

By tracking back the flux from the formate-tetrahydrofolate ligase-catalyzed reaction 

to glycolysis we uncovered a novel pathway for ATP generation (Fig. 4). The pathway is 

composed of three main steps. First, synthesis of L-serine (ser-L) from the glycolysis 

intermediate metabolite 3-phosphoglycerate (3pg), using NAD and L-glutamate (glu-L) 

as cofactors (Fig. 4a), with the overall reaction 

(6)  3-phosphoglycerate + L-glutamate + NAD
+
 + H2O  

!  L-gerine + $-Ketoglutarate + H
+
 + NADH + Phosphate  

Second, the conversion of L-serine to glycine with a concomitant one-carbon metabolism 

cycle, resulting in the net generation of 1 mole of ATP per mole of serine transformed, 

using NADP as a cofactor (Fig. 4b), with the overall reaction 

(7)  L-Serine + NADP + H2O + ADP + Phosphate 

   ! Glycine + NADPH + 2 H
+
 + ATP 

Finally, the conversion glycine to ammonium (NH
4
) in the mitochondria with a 

concomitant one-carbon metabolism cycle, using NAD and NADP as cofactors (Fig. 4c 

or d), with the overall reaction 

(8)  Glycine + NADP + NAD
+
 + H2O + ADP + Phosphate  

! NH4 + CO2 + NADPH + NADH + 2 H
+
 + ATP 

This pathway has a net yield of 2 mole of ATP per mole of 3-phosphoglycerate, therefore 

4 mole of ATP per mole of glucose. Furthermore, when compared to the standard 

glycolysis, the net zero ATP glycolysis manifests a significant decrease in lactate 

excretion while increasing the alanine excretion (Fig. 2 a,b, right panel) 

Although the reactions in the reaction cycle shown in Fig. 4b are all annotated as 

reversible in the human metabolic network reconstruction [16], the cycle may not work in 

the direction of ATP production due to thermodynamic constraints. Formate-

tetrahydrofolate ligase (FTHFL) can efficiently catalyze the synthesis of ATP in the 

bacterium Clostridium cylindrosporum [22]. However, it remains to be elucidated 

whether this is also feasible in human cells, where the tri-functional enzyme C1-

tetrahydrofolate synthase is responsible for the methylene-tetrahydrofolate 

dehydrogenase (MTHFD), methenyl-tetrahydrofolate cyclohydrolase (MTHFC) and 

FTHFL activities. To address this issue, we have analyzed a kinetic model of the reaction 

cycle shown in Figure 4b, focusing on the cytosolic enzymes alone. The model is fully 

described in the Supporting Information and is based on a previous model of folate 
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metabolism [23]. We demonstrate that the kinetic model has a stable steady state in the 

direction of ATP production, indicating that the novel pathway is thermodynamically 

feasible.  

 

Discussion 

The recent demonstration of an alternative glycolysis pathway with net zero ATP 

production in rapidly proliferating cells [12] challenged the general notion that the 

production of ATP is a major function of glycolysis. Instead, an alternative hypothesis 

suggests that the increased rate of glycolysis in rapidly proliferating cells is present to 

support the increased demand for precursor metabolites by anabolic processes involved in 

cell growth and proliferation [24]. However, based on a partial- or full genome-scale 

reconstruction of human cell metabolism [16,17] containing the standard glycolysis 

pathway we [14,15] and others [13] have shown that the anabolic requirements can be 

satisfied without the need for a dramatic upregulation of glycolysis and the excretion of 

lactate. We have recapitulated this result here, now using the alternative glycolysis 

pathway with net zero ATP production, providing in silico evidence that the demand for 

precursor metabolites can be satisfied without upregulation of the alternative glycolysis 

pathway (Fig. 2). 

We have shown previously that molecular crowding is a major determinant of the 

metabolic changes observed in highly proliferating mammalian- [14,15] and prokaryotic 

cells [25,26] and in quiescent cells with high energy demands [14]. In essence, the high 

density of macromolecules in the intracellular millieu results in a ‘competition’ among 

mitochondria, ribosomes, metabolic enzymes and structural protein for the available 

intracellular space. At low metabolic rates this constraint is less pronounced, and 

therefore the density of the required organelles and macromolecules can increase to 

accommodate the increasing metabolic rate. However, much as just a finite number of 

people can be placed in a room, we can just fit a finite amount of mitochondria in the cell, 

resulting in an upper bound for OxPhos capacity. To satisfy its energetic needs beyond 

this maximum OxPhos capacity the cell need to switch to other pathways that are less 

costly in terms of the required relative fraction to allocate the corresponding enzymes, 

such as the classic glycolysis pathway. However, this hypothesis has been challenged by 

the observation that highly proliferating cells utilize an alternative glycolysis pathway 

with net zero ATP production [12]. To resolve this contradiction we have improved our 

genome-scale metabolic model of a human cell to be able to investigate the consequences 

of a net zero ATP production glycolysis. 

The results of our in silico analyses yield several surprising observations. The 

glycolysis flux is upregulated in highly proliferating cells and it is routed from 3-

phosphoglycerate toward serine biosynthesis. This prediction is supported by recent 

experimental observations in highly proliferating cells. Rapidly proliferating cells during 

embryonic development and cancer cells express a splice variant of pyruvate kinase 

(PKM2) that has low catalytic activity for the conversion of phosphoenol pyruvate to 

pyruvate, effectively reducing the rate over the last steps of glycolysis [12,27]. Serum-

stimulation of Rat1A fibroblasts proliferation results in an increased 
13

C-labeled glycine 

derived from 3-phosphoglycerate, in a myc dependent manner [28]. In agreement with the 
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latter observation, gene expression microarray analyses have reported up-regulation of 

enzyme-encoding genes that catalyze one carbon metabolism in cancer cells [29,30]. 

These observations support the existence of an alternative glycolysis pathway with net 

zero ATP production and concomitant up-regulation of serine biosynthesis and one-

carbon metabolism. 

Our in silico approach allow us to investigate the fate of the high rate of the serine 

biosynthesis pathway. We discover that its final endpoint is a novel pathway for ATP 

generation, starting from the biosynthesis of serine and involving reactions in the one-

carbon metabolism pathway (Fig. 4). The reaction responsible for the net ATP generation 

is catalyzed by formate-tetrahydrofolate ligase (EC 6.3.4.3), working in the ATP 

production direction. This pathway has a yield of 2 mole of ATP per mole of 3-

phosphoglycerate, or 4 moles of ATP per mole of glucose. Taken together our in silico 

evidence indicates that, even in the context of an alternative glycolysis pathway with net 

zero ATP production, glycolysis is upregulated to satisfy the high energy demand of 

highly proliferating cells, during conditions where molecular crowding imposes a bound 

or a reduction in the mitochondrial density. 

The novel pathway doubles the ATP yield from 2 to 4 mole of ATP per mole of 

glucose (Table I). The novel pathway requires, however, the balance of several co-factors 

and thus it is coupled to several other reactions. Yet, it remains to be elucidated what the 

potential evolutionary advantage of having two alternative glycolysis pathways is (i.e., 

the net zero ATP and the standard pathways) . As we show here, the novel pathway can 

generate two times more ATP, thus an energetic reason is probably likely. In contrast, the 

novel pathway involves 17 reactions, 7 more than the standard glycolysis, potentially 

contributing more to molecular crowding. Taken together with OxPhos, we obtain a 

hierarchy in terms of ATP yield: OxPhos >> net-zero-ATP-glycolysis > standard-

glycolysis, and the same hierarchy in terms of molecular crowding. Therefore, these 

pathways provide the cell with different alternatives to cope with competing efficiency 

principles, ATP yield per mole of substrate or ATP yield per occupied volume fraction.  

Concomittantly, other factors, such as the cellular lactate and alanine production also has 

several potential advantages on the population level that may enhance the invasiveness of 

tumor cells. Also, tumor cells frequently encounter fluctuating hypoxia levels within 

growing tumors [31] requiring a capability to rapidly deploy alternative metabolic 

strategies [32]. In any event, our model identifies several metabolic changes that can be 

subject to further theoretical and experimental investigations.

Table I   Overall reaction 

 

a) Standard glycolysis: 

 

 Glucose + 2 ADP + 2 Phosphate ! 2 Lactate + 2ATP + 2 H2O + 2 H
+
 

 

b) Novel ATP generating pathway: 

  

Glucose + 2 L-glutamate + 6 NAD
+
 + 4 NADP + 6 H2O + 4 ADP + 4 Phosphate  !  2 

NH4 + 2 $-ketoglutarate + 6 NADH + 4 NADPH + 4 ATP + 14 H
+
 + 2 CO2 
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Material Methods 

Metabolic network reconstruction: The reactions annotated in H. sapiens metabolic 

reconstruction 1 where downloaded from the BiGG database [16]. They are listed in 

Table S1, http://cinjweb.umdnj.edu/~vazqueal/fba_human.html, together with all 

auxiliary reactions. 

Crowding coefficients: Dividing the mitochondrium specific volume (3.15 mL/g in 

mammalian liver [33] and 2.6 mL/g in muscle [34]) by the rate of ATP production per 

mitochondrial mass (0.1-1.0 mmol ATP/min/g [35,36,37]) we obtain aM values between 

0.0026 to 0.032 min/mM. Except when specified, we use the median 0.017 min/mM. 

Dividing the ribosome molar volume (vR = 4,000 nm
3
 & 6.02 10

23
/mol=2.4 L/mmol) by 

the rate of protein synthesis per ribosome (0.67 proteins/min [38]) we obtain aR=3.6 

min/mM. The enzyme crowding coefficients were estimated as ai=vE/ki. Multiplying the 

median molecular weight of human enzymes (98,750 g/mol, BRENDA [19], Table S2) 

by the enzymes specific volume (approximated by the specific volume of spherical 

proteins, 0.79 mL/g [39]) we obtain an estimated enzymes molar volume of vE=0.078 

L/mmol. The turnover numbers of human enzymes have significant variations from 1 to 

100 sec
-1

 (BRENDA, [19], Table S2). In the simulations log10(ki) was sampled 

uniformingly from the interval log10(1/sec) to log10(100/sec). 

Macromolecular composition: Proteins were divided into three pools: ribosomal-, 

components of metabolic enzyme complexes-, and non-metabolic proteins. Each 

ribosome contributes to nPR=82 proteins/ribosome (49 in the 60S and 33 in the 40S 

subunits [40]). The ribosomal protein concentration was computed as PR=nPR!R/vR. Each 

enzyme contributes with nPE=2.4 proteins in average, estimated as median enzyme 

molecular weight (98,750 g/mol, reported above) divided by the median molecular 

weight of a human protein (40,835 g/mol). The median molecular weight of a human 

protein was estimated from the median protein length (355 amino acids [41]) and the 

typical amino acid composition [42]. The enzyme related protein concentration was 

computed as PE="inPEfi/ki. The concentration of non-metabolic proteins was estimated as 

85% (10% metabolic enzymes and 5% ribosomal protein [41]) of the reported total 

protein content per cell dry weight (0.018 mmol/g DW [42]), i.e. 0.015 mmol/g DW. The 

lipids, DNA and RNA composition were estimated by their relative abundance in a 

generic mammalian cell [42]. The abundance per cell dry weight were converted to 

concentrations after dividing by the typical cell specific volume 4.3 mL/g [43]. This 

resulted in a concentration of non-metabolic protein of P0=3.59 mM. The maximum 

macromolecular density of human cells in the absence of osmotic stress is around 

!max=40% [44].  

Maintenance parameters: The ATP production rate necessary for cell maintenance is 

1.55 mmol ATP/g DW/h [42]. The basal protein degradation rate was estimated as 

kD(P0+PE+PR), where kD=0.01/h [45].  

Simulations: The optimization problem in equations (1)-(5) was solved in Matlab, using 

the linear programming function linprog. All reversible reactions were represented by 

an irreversible reaction on each direction with their own turnover number ki. Most flux 

bounds were set to vi,min=0 and vi,max=%, unless specified otherwise (Table S1). 

Kinetic model: The kinetic model is described in the Supplementary Information. 
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 Figures 

 

 

 

Figure 1. Cell component densities at different proliferation rates: Model predicted 

relative cell volume fraction occupied by metabolic enzymes (red squares), ribosomes 

(blue circles) and mitochondria (green triangles), respectively. The model-predicted 

median and 90% confidence intervals are shown. 
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Figure 2. Metabolic switch with increasing proliferation rate: Selected metabolic reactions 

and pathways at different proliferation rates in cells utilizing the alternative glycolysis with net 

zero ATP production. The individual panels show the rate of the indicated reactions (vertical axis, 

mM/min) as a function of the proliferation rate (horizontal axis, 1/day). The gray shadow 

background contains reactions taking place in the mitochondria. Abbreviations: metabolite 

import/export (Ex metabolite: glc= glucose, gln=glutamine, Ala-L=alanine, trp-L=tryptophan, 

lac=lactate), phosphoglycerate kinase (PGK), pyruvate kinase (PK), phosphoglycerate 

dehydrogenase (PGCD), L-alanine transaminase (ALTA-L), L-lactate dehydroganse (LDH-L), 

malic enzyme (ME), malate dehydrogenase (MDH), pyruvate carboxylase (PC), pyruvate 

dehydrogenase (PDH), citrate synthase (CS), $-ketoglutarate dehydrogenase (AKGD).
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Figure 3. Selected reactions contributing to ATP generation at different 

proliferation rates: Contribution of ATP synthase, phosphoglycerate kinase (PGK), 

pyruvate kinase (PK) and formate-tetrahydrofolate ligase (FTHFL) to ATP generation in 

cells at low (0.03/day, left) and high (2.52/day, right) proliferation rates. The ATP 

consumed for cell maintenance (black) is shown as a reference. a) cells using the 

alternative glycolysis pathway with net zero ATP production. b) cells using the standard 

glycolysis.
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Figure 4. Novel ATP producing pathway: The fate of the high glycolysis flux in cells 

utilizing the alternative glycolysis [7]. The squared panels show the rate of the indicated 

reaction (vertical axis, in units of mM/min=mmol/min/L) as a function of the 

proliferation rate (horizontal axis, in units of 1/day). The gray shadow background 

contains reactions taking place in the mitochondria. Metabolite and enzyme 

abbreviations: 3-phosphoglycerate (3pg), phosphoglycerate dehydrogenase (PGCD), 3-

phosphohydroxypyruvate (3php), L-glutamate (glu-L), phosphoserine transaminase 

(PSERT), $-ketoglutarate (aKg), L- phosphoserine (pser-L), phosphoserine phosphatase 

(PSP-L), L-serine (ser-L), tetrahydrofolate (thf), serine hydroxymethyltransferase 

(SHMT), glycine (gly), 5,10-methylene tetrahydrofolate (mlthf), 

methylenetetrahydrofolate dehydrogenase (MTHFD),  5,10-methenyl-tetrahydrofolate 

(methf), methenyltetrahydrofolate cyclohydrolase (MTHFC), 10-formyltetrahydrofolate 

(10thf), formate-tetrahydrofolate ligase (FTHFL), S-aminomethyldihydrolipoylprotein 

(alpro), dyhydrolipolprotein (dhlpro), lipoylprotein (lpro), S-

aminomethyldihydrolipoamide (alpam), dihydrolipoamide (dhlam), and lipoamide 

(lpam). glycine-cleavage complex with lipoylprotein (GCCam, GCCbim and GCCcm) 

and glycine-cleavage complex with lipoamide (GCC2am, GCC2bim and GCC2cm). 



 15 

References 

1. Voet D, Voet JG, Pratt CW (2006) Fundamentals of biochemistry: life at the molecular 

level. New York: Wiley. 1 v. (various pagings) p. 

2. Warburg O (1956) On the origin of cancer cells. Science 123: 309-314. 

3. Wang T, Marquardt C, Foker J (1976) Aerobic glycolysis during lymphocyte 

proliferation. Nature 261: 702-705. 

4. Hume DA, Radik JL, Ferber E, Weidemann MJ (1978) Aerobic glycolysis and 

lymphocyte transformation. Biochem J 174: 703-709. 

5. Parra-Bonilla G, Alvarez DF, Al-Mehdi AB, Alexeyev M, Stevens T (2010) Critical 

role for lactate dehydrogenase A in aerobic glycolysis that sustains pulmonary 

microvascular endothelial cell proliferation. Am J Physiol Lung Cell Mol Physiol 

299: L513-522. 

6. Williams R, Philpott MP, Kealey T (1993) Metabolism of freshly isolated human hair 

follicles capable of hair elongation: a glutaminolytic, aerobic glycolytic tissue. J 

Invest Dermatol 100: 834-840. 

7. Munyon WH, Merchant DJ (1959) The relation between glucose utilization, lactic acid 

production and utilization and the growth cycle of L strain fibroblasts. Exp Cell 

Res 17: 490-498. 

8. Trabold O, Wagner S, Wicke C, Scheuenstuhl H, Hussain MZ, et al. (2003) Lactate 

and oxygen constitute a fundamental regulatory mechanism in wound healing. 

Wound Repair Regen 11: 504-509. 

9. Farrell PA, Wilmore JH, Coyle EF, Billing JE, Costill DL (1979) Plasma lactate 

accumulation and distance running performance. Med Sci Sports 11: 338-344. 

10. Joyner MJ, Coyle EF (2008) Endurance exercise performance: the physiology of 

champions. J Physiol 586: 35-44. 

11. Lemons JM, Feng XJ, Bennett BD, Legesse-Miller A, Johnson EL, et al. (2010) 

Quiescent fibroblasts exhibit high metabolic activity. PLoS Biol 8: e1000514. 

12. Vander Heiden MG, Locasale JW, Swanson KD, Sharfi H, Heffron GJ, et al. (2010) 

Evidence for an alternative glycolytic pathway in rapidly proliferating cells. 

Science 329: 1492-1499. 

13. Shlomi T, Benyamini T, Gottlieb E, Sharan R, Ruppin E (2011) Genome-scale 

metabolic modeling elucidates the role of proliferative adaptation in causing the 

warburg effect. PLoS Comput Biol 7: e1002018. 

14. Vazquez A, Oltvai ZN (2011) Molecular crowding defines a common origin for the 

warburg effect in proliferating cells and the lactate threshold in muscle 

physiology. Plos One 6: e19538. 

15. Vazquez A, Liu J, Zhou Y, Oltvai ZN (2010) Catabolic efficiency of aerobic 

glycolysis: the Warburg effect revisited. BMC Syst Biol 4: 58. 

16. Schellenberger J, Park JO, Conrad TM, Palsson BO (2010) BiGG: a Biochemical 

Genetic and Genomic knowledgebase of large scale metabolic reconstructions. 

BMC Bioinformatics 11: 213. 

17. Mo ML, Jamshidi N, Palsson BO (2007) A genome-scale, constraint-based approach 

to systems biology of human metabolism. Mol Biosyst 3: 598-603. 

18. Vazquez A, de Menezes MA, Barabasi AL, Oltvai ZN (2008) Impact of limited 

solvent capacity on metabolic rate, enzyme activities, and metabolite 

concentrations of S. cerevisiae glycolysis. PLoS Comput Biol 4: e1000195. 



 16 

19. Schomburg I, Chang A, Schomburg D (2002) BRENDA, enzyme data and metabolic 

information. Nucleic Acids Res 30: 47-49. 

20. Cheng T, Sudderth J, Yang C, Mullen AR, Jin ES, et al. (2011) Pyruvate carboxylase 

is required for glutamine-independent growth of tumor cells. Proc Natl Acad Sci 

U S A 108: 8674-8679. 

21. Wise DR, DeBerardinis RJ, Mancuso A, Sayed N, Zhang XY, et al. (2008) Myc 

regulates a transcriptional program that stimulates mitochondrial glutaminolysis 

and leads to glutamine addiction. Proc Natl Acad Sci U S A 105: 18782-18787. 

22. Curthoys NP, Rabinowitz JC (1972) Formyltetrahydrofolate synthetase. Binding of 

folate substrates and kinetics of the reverse reaction. J Biol Chem 247: 1965-

1971. 

23. Nijhout HF, Reed MC, Budu P, Ulrich CM (2004) A mathematical model of the 

folate cycle: new insights into folate homeostasis. J Biol Chem 279: 55008-

55016. 

24. Vander Heiden MG, Cantley LC, Thompson CB (2009) Understanding the Warburg 

effect: the metabolic requirements of cell proliferation. Science 324: 1029-1033. 

25. Beg QK, Vazquez A, Ernst J, de Menezes MA, Bar-Joseph Z, et al. (2007) 

Intracellular crowding defines the mode and sequence of substrate uptake by 

Escherichia coli and constrains its metabolic activity. Proc Natl Acad Sci U S A 

104: 12663-12668. 

26. Vazquez A, Beg QK, Demenezes MA, Ernst J, Bar-Joseph Z, et al. (2008) Impact of 

the solvent capacity constraint on E. coli metabolism. BMC Syst Biol 2: 7. 

27. Christofk HR, Vander Heiden MG, Harris MH, Ramanathan A, Gerszten RE, et al. 

(2008) The M2 splice isoform of pyruvate kinase is important for cancer 

metabolism and tumour growth. Nature 452: 230-233. 

28. Morrish F, Isern N, Sadilek M, Jeffrey M, Hockenbery DM (2009) c-Myc activates 

multiple metabolic networks to generate substrates for cell-cycle entry. Oncogene 

28: 2485-2491. 

29. Nikiforov MA, Chandriani S, O'Connell B, Petrenko O, Kotenko I, et al. (2002) A 

functional screen for Myc-responsive genes reveals serine 

hydroxymethyltransferase, a major source of the one-carbon unit for cell 

metabolism. Molecular and Cellular Biology 22: 5793-5800. 

30. Palaskas NJ, Larson SM, Schultz N, Komisopoulou E, Wong J, et al. (2011) 18F-

fluorodeoxy-glucose positron emission tomography (18FDG-PET) marks MYC-

overexpressing human basal-like breast cancers. Cancer Res (In press).  

31. Cardenas-Navia LI, Mace D, Richardson RA, Wilson DF, Shan S, et al. (2008) The 

pervasive presence of fluctuating oxygenation in tumors. Cancer Res 68: 5812-

5819. 

32. Semenza GL (2008) Tumor metabolism: cancer cells give and take lactate. J Clin 

Invest 118: 3835-3837. 

33. Glas U, Bahr GF (1966) Quantitative study of mitochondria in rat liver. Dry mass, 

wet mass, volume, and concentration of solids. J Cell Biol 29: 507-523. 

34. Schwerzmann K, Hoppeler H, Kayar SR, Weibel ER (1989) Oxidative capacity of 

muscle and mitochondria: correlation of physiological, biochemical, and 

morphometric characteristics. Proc Natl Acad Sci U S A 86: 1583-1587. 



 17 

35. Wibom R, Hultman E, Johansson M, Matherei K, Constantin-Teodosiu D, et al. 

(1992) Adaptation of mitochondrial ATP production in human skeletal muscle to 

endurance training and detraining. J Appl Physiol 73: 2004-2010. 

36. Short KR, Nygren J, Barazzoni R, Levine J, Nair KS (2001) T(3) increases 

mitochondrial ATP production in oxidative muscle despite increased expression 

of UCP2 and -3. Am J Physiol Endocrinol Metab 280: E761-769. 

37. Hou XY, Green S, Askew CD, Barker G, Green A, et al. (2002) Skeletal muscle 

mitochondrial ATP production rate and walking performance in peripheral arterial 

disease. Clin Physiol Funct Imaging 22: 226-232. 

38. Princiotta MF, Finzi D, Qian SB, Gibbs J, Schuchmann S, et al. (2003) Quantitating 

protein synthesis, degradation, and endogenous antigen processing. Immunity 18: 

343-354. 

39. Lee B (1983) Calculation of volume fluctuation for globular protein models. Proc 

Natl Acad Sci U S A 80: 622-626. 

40. Alberts B (2008) Molecular biology of the cell. New York, N.Y.,: Garland Science. 

xxxiii, 1601p. p. 

41. Brocchieri L, Karlin S (2005) Protein length in eukaryotic and prokaryotic proteomes. 

Nucleic Acids Res 33: 3390-3400. 

42. Sheikh K, Forster J, Nielsen LK (2005) Modeling hybridoma cell metabolism using a 

generic genome-scale metabolic model of Mus musculus. Biotechnol Prog 21: 

112-121. 

43. Frame KK, Hu WS (1990) Cell volume measurement as an estimation of mammalian 

cell biomass. Biotechnol Bioeng 36: 191-197. 

44. Zhou EH, Trepat X, Park CY, Lenormand G, Oliver MN, et al. (2009) Universal 

behavior of the osmotically compressed cell and its analogy to the colloidal glass 

transition. Proc Natl Acad Sci U S A 106: 10632-10637. 

45. Savinell JM, Palsson BO (1992) Network analysis of intermediary metabolism using 

linear optimization. I. Development of mathematical formalism. J Theor Biol 154: 

421-454. 

 

 



 18 

Figure S1 

 

 



Supplementary Material

Kinetic model of the Fig. 3b module

Although the reactions in the reaction cycle shown in Figure 4b of the main text are all annotated as reversible,
the cycle may not work in the direction of ATP production due to thermodynamic constraints. To address this issue,
we analyze a kinetic model of the reaction cycle shown in Figure 4b, focusing on the cytosolic enzymes alone. The
model is fully described in the Supporting Information and was based on a previous model of folate metabolism [1].
The four reactions in Fig. 3b are modeled as revesersible random multimolecular reactions

fSHMT =

{

kSHMT,f
[thf ]

KSHMT,thf + [thf ]

[ser − L]

KSHMT,ser−L + [ser − L]

− kSHMT,r
[mlthf ]

KSHMT,mlthf + [mlthf ]

[gly]

KSHMT,gly + [gly]

}

ESHMT (1)

fMTHFD =

{

kMTHFD,f
[mlthf ]

KMTHFD,mlthf + [mlthf ]

[nadp]

KMTHFD,nadp + [nadp]

− kMTHFD,r
[methf ]

KMTHFD,methf + [methf ]

[nadph]

KMTHFD,nadph + [nadph]

}

EMTHFD1 (2)

fMTHFC =

{

kMTHFC,f
[methf ]

KMTHFC,methf + [methf ]

− kMTHFC,r
[10fthf ]

KMTHFC,10fthf + [10fthf ]

}

EMTHFD1 (3)

fFTHFL =

{

kFTHFL,f
[10fthf ]

KFTHFL,10fthf + [10fthf ]

[adp]

KFTHFL,adp + [adp]

[pi]

KFTHFL,pi + [pi]

− kFTHFL,r
[thf ]

KFTHFL,thf + [thf ]

[atp]

KFTHFL,atp + [atp]

[for]

KFTHFL,for + [for]

}

EMTHFD1 (4)

where freaction denotes the net reaction rate, kreaction,f and kreaction,r forward and backward turnover numbers,
Kreaction,metabolite the half-saturation constant, [metabolite] the corresponding metabolite concentration, and Eenzyme

the concentration of the corresponding enzyme. Here the following abbreviations have been used: tetrahydrofolate
(thf), 5,10-methylene hydrofolate (mlthf), 5,10-methenyltetrahydrofolate (methf), 10-formyltetrahydrofolate (10fthf),
L-serine (ser-L), glycine (gly), formate (for), serine hydroxymethyltransferase (SHMT), methylenetetrahydrofolate de-
hydrogenase (MTHFD), methenyltetrahydrofolate cyclohydrolase (MTHFC), and 5-formethyltetrahydrofolate cyclo-
ligase (FTHFL). We note in human cells the MTHFD, MTHFC and FTHFL activities are carried on by a tri-functional
enzyme encoded by the MTHD1. The kinetic parameter values are reported in Table S3. These parameters where
obtained from [1] or through references cited in the BRENDA database [2]. In humans the cytosolic enzyme activities
of MTHFD, MTHFC and FTHFL are carried by the tri-functional enzyme C1-tetrahydrofolate synthase [3], encoded
by the SMTHFD1 gene. Therefore, the reaction cycle shown in Figure 4b is regulated by the activity of two enzymes,
serine hydroxymethyltransferase (SHMT) and C1-tetrahydrofolate synthase (SMTHFD1). The total concentration of
these two enzymes ESHMT+SMTHFD1 determines how fast the system evolves to a steady state and the absolute
rate at steady state, but it has no impact on the metabolite concentrations at steady state. Taking this fact into
consideration we focus on the system behavior as a function of the relative concentration of one of the enzymes,
SHMT for example ESMTHFD1/(ESHMT + ESMTHFD1).

We focus our analysis on the concentrations of the intermediate metabolites thf, mlthf, methf and 10fthf, assuming
the concentration of ser-L, glyc, formate, co-factors and enzymes constant, and given as input parameters of the model
(Table S3, below). The concentration of intermediate metabolites evolve in time following the first order differential
equations

d[thf ]

dt
= fFTHFL([thf ], [10fthf ])− fSHMT ([mlthf ], [thf ]) (5)
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d[mlthf ]

dt
= fSHMT ([mlthf ], [thf ])− fMTHFC([mlthf ], [methf ]) (6)

d[methf ]

dt
= fMTHFC([mlthf ], [methf ])− fMTHFD([methf ], [10fthf ]) (7)

d[thf ]

dt
= fMTHFD([methf ], [10fthf ])− fFTHFL([10fthf ], [thf ]) (8)

Our aim is to determine whether this dynamical system has a steady state with in the direction of producing ATP.
To this end we numecarically determined the fixed point of (5)-(8) that resulted in the highest steady state flux with
ATP production. This was accomplished solving the optimization problem:

Maximize fFTHFL([mlthf ], [thf ]) (9)

subject to the fixed point constraints

d[thf ]

dt
=

d[mlthf ]

dt
=

d[methf ]

dt
=

d[thf ]

dt
= 0 (10)

and the metabolite concentration bounds

0 ≤ [thf ] ≤ [thf ]max

0 ≤ [mlthf ] ≤ [mlthf ]max

0 ≤ [methf ] ≤ [methf ]max

0 ≤ [10fthf ] ≤ [10fthf ]max (11)

The problem was solved in Matlab using the function fmicon, with all upper bounds equal to 1 mM.
For all 0 < ESMTHFD1/(ESHMT + ESMTHFD1) < 1 the steady state with maximum rate is characterized by a

positive rate of ATP production (Fig. S2, green cicrles), indicating that the reaction cycle shown in Figure 4b is
thermodynamically feasible in the direction of ATP production. The maximum rate is achieved at a relative concen-
tration ESMTHFD1/(ESHMT + ESMTHFD1) around 0.05. Hence, the cycle achieves higher rates when the relative
concentration of SMTHFD1 is much higher than that of SHMT. We also note the maximum rate calculated from the
specified kinetic parameters is much higher than the median obtained from simulations applying a two-fold change in
the model kinetic parameters (Fig. S2, red squares). This could indicate that the kinetic parameters in this pathway
have been selected for maximum ATP production. However, since the curve for the observed kinetic parameters is
still within the 90% confidence intervals (Fig. S2, red errorbars) we cannot exclude this is just coincidence.
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Parameter Value Source

SHMT

kSHMT,f 9.58 [3]
kSHMT,r 0.60 Estimated as kSHMT,f Vmax,r/Vmax,f

Vmax,f 40,000 [1]
Vmax,r 25,000 [1]
KSHMT,thf 0.05 [1]
KSHMT,ser−L 0.6 [1]
KSHMT,mlthf 3.2 [1]
KSHMT,gly 10 [1]

MTHFD

kMTHFD,f 10 [4]
kMTHFD,r kMTHFD,f Vmax,r/Vmax,f

Vmax,f 200,000 [1]
Vmax,r 594,000 [1]
KMTHFD,mlthf 0.002 [1]
KMTHFD,nadp 0.022 [4]
KMTHFD,methf 0.01 [1]
KMTHFD,nadph 0.022 Estimated as KMTHFD,nadph

[nadp] 0.02 [5]
[nadph] 0.01 [5]

MTHFC

kMTHFC,f 134 [6]
kMTHFC,r 3.35 Estimated as kMTHFC,f Vmax,r/Vmax,f

Vmax,f 800,000 [1]
Vmax,r 20,000 [1]
KMTHFC,methf 250 [1]
KMTHFC,10fthf 100 [1]

FTHFL

kFTHFL,f 0.23 Estimated from (4) at equilibrium (fFTHFL = 0)
[10fthf ]eq 4 Clostridium cylindrosporum [7]
[adp]eq 4 Clostridium cylindrosporum [7]
[pi]eq 4 Clostridium cylindrosporum [7]
[thf ]eq 0.9 Clostridium cylindrosporum [7]
[atp]eq 0.8 Clostridium cylindrosporum [7]
[for]eq 2.3 Clostridium cylindrosporum [7]
kFTHFL,r 0.0364 [8]
KFTHFL,10fthf 10 Clostridium cylindrosporum [9]
KFTHFL,adp 0.0364 [8]
KFTHFL,pi 4 [8]
KFTHFL,thf 0.364 [8]
KFTHFL,atp 0.0302 [8]
KFTHFL,for 0.0367 [8]
[adp] 0.011 [10]
[pi] 6 [10]
[atp] 5 [10]
[for] 0.9 [1]

Table S3: Model parameters. All half-saturation constants Kreaction,metabolite and metabolite concentrations
[metabolite] are expressed in mM and all turnover numbers kreaction,direction in 1/sec.
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Figure S2: Kinetic properties of the reaction cycle shown in Figure 4b. Maximum ATP production
rate of cycle in Figure 4b as a function of ESMTHFD1/(ESHMT + ESMTHFD1). The green squares were obtained
using the kinetic parameters reported in Table S3. The red squares and errorbars represent the median and 90%
confidence interval over 100 simulated kinetic parameters, where the logarithm of each kinetic parameter was sampled
uniformingly from a value two fold lower to a value two fold higher than the value in Table S3.
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