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Quantitative assessment of cell 
fate decision between autophagy 
and apoptosis
Bing Liu1, Zoltán N. Oltvai1,2, Hülya Bayır3, Gary A. Silverman4, Stephen C. Pak4,  
David H. Perlmutter4 & Ivet Bahar  1

Autophagy and apoptosis are cellular processes that regulate cell survival and death, the former by 
eliminating dysfunctional components in the cell, the latter by programmed cell death. Stress signals 
can induce either process, and it is unclear how cells ‘assess’ cellular damage and make a ‘life’ or ‘death’ 
decision upon activating autophagy or apoptosis. A computational model of coupled apoptosis and 
autophagy is built here to analyze the underlying signaling and regulatory network dynamics. The 
model explains the experimentally observed differential deployment of autophagy and apoptosis 
in response to various stress signals. Autophagic response dominates at low-to-moderate stress; 
whereas the response shifts from autophagy (graded activation) to apoptosis (switch-like activation) 
with increasing stress intensity. The model reveals that cytoplasmic Ca2+ acts as a rheostat that fine-
tunes autophagic and apoptotic responses. A G-protein signaling-mediated feedback loop maintains 
cytoplasmic Ca2+ level, which in turn governs autophagic response through an AMP-activated protein 
kinase (AMPK)-mediated feedforward loop. Ca2+/calmodulin-dependent kinase kinase β (CaMKKβ) 
emerges as a determinant of the competing roles of cytoplasmic Ca2+ in autophagy regulation. The 
study demonstrates that the proposed model can be advantageously used for interrogating cell 
regulation events and developing pharmacological strategies for modulating cell decisions.

Autophagy is a cytoprotective homeostatic process in which cells digest their own cytoplasmic constituents or 
organelles, and degrade them in the lysosomes, in response to diverse stress stimuli1. The resulting products 
can be recycled to generate energy and build new proteins, hence the activation of autophagy as a protective 
mechanism against starvation2. Autophagy also serves as a cellular quality control process that removes damaged 
organelles or aggregates of misfolded proteins that may otherwise cause a broad range of diseases, including neu-
rodegenerative disorders3 and liver diseases4,5. Yet, excessive autophagy has been linked to ‘autophagic’ cell death, 
and autophagy activation has been pointed out to be harmful under certain disease conditions (e.g. cancer)6, 
while recent studies suggest that autophagy might represent in those cases an attempt to prevent the inevitable 
demise of the dying cells7. The modulation of autophagy has thus emerged as an important therapeutic strategy 
for several diseases8,9.

Due to a complex crosstalk between autophagy and apoptosis6, it is often unclear which specific interactions 
contribute to pro-survival or pro-death effects in a given disease. A database has been developed10 for mining 
the network of protein-protein interactions as well as transcription factors and miRNAs implicated in autophagy 
regulation. While this database is a valuable resource that provides information on autophagy components and 
regulators, there is a need to build in parallel models and methods that can leverage existing data and assist in 
making mechanistic inferences on the dynamics of autophagic interactions. Our goal here is to present such a 
tractable mathematical model to assess how cells orchestrate the dynamics of signaling networks to make ‘life’ vs. 
‘death’ decisions, and how these are modulated by pharmacological interventions.

Our model includes mTOR and inositol signaling autophagic pathways and intrinsic apoptosis pathways 
as well as their crosstalks mediated by Bcl2, caspases, p53, calpain and Ca2+. As will be shown below, using 
a statistical model checking (SMC)-based framework11, we generated a calibrated model that captures cellular 
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heterogeneity, and closely reproduces the differential initiation and time evolution of autophagy or apoptosis in 
response to nutritional, genotoxic, or endoplasmic reticulum (ER) stresses observed in single-cell experiments12.

The model points to AMP-activated protein kinase (AMPK) as a key mediator of the competing roles of 
intracellular (IC) Ca2+, designated as Ca2+(IC). The Ca2+(IC) level, [Ca2+(IC)], acts as a rheostat that fine-tunes 
autophagic and apoptotic responses, regulated by a positive (G-protein signaling) feedback loop and Ca2+/
calmodulin-dependent kinase kinase β (CaMKKβ) level. The model also enables the rapid assessment of the effect 
of a series of drugs on the onset and development of autophagy or apoptosis, under different stress conditions.

Results
Quantitative model of coupled autophagy and apoptosis signaling network. The model is com-
posed of five modules, which includes the major signaling cascades activated in response to nutritional, geno-
toxic, and ER stresses (Fig. 1a). The system is composed of 94 components, including the different activation, 
binding or localizations states of involved proteins, and the dynamics of this system is represented by a system 
of ordinary differential equations (ODEs). Supplementary Tables S1 and S2 list the components (and acronyms), 
rate equations and parameters. We present below a brief description of each of these five modules (Fig. 1b).

Apoptosis module. Following our previous model13, nuclear p53 gains transcriptional activity for pro-apoptotic 
proteins represented by Bax and its activator, PUMA, under genotoxic (DNA) stress. Activated p53 induces 
Mdm2, which, in turn, inhibits p53 by facilitating its ubiquitination and translocation to the mitochondrium.

Mitochondrial p53 inhibits the anti-apoptotic protein Bcl-2, and activates Bax to promote the formation of 
mitochondrial outer membrane permeability pores for the release of cytochrome c (cyt c), which leads to caspase 
activation. The process is amplified by a positive feedback loop in which caspase-truncated Bid (tBid) induces the 
activation and subsequent oligomerization of Bax.

ER stress also triggers apoptosis, for example, through activation of c-Jun N-terminal kinases (JNK)-, pro-
tein kinase R (PKR)-like ER kinase (PERK)-, and death-associated protein kinase 1 (DAPK1)-dependent path-
ways14,15. Further activation of caspase cascades by calpain due to the stress-induced release of ER Ca2+ to the 
cytoplasm is described in the calcium module.

Autophagy module. Autophagy involves the formation of a phagophore, which engulfs dysfunctional sub-
strates, protein aggregates, or organelles to form autophagosomes. The content of the autophagosome is degraded 
through the lysosomal machinery3. Autophagic elimination involves several protein complexes such as the mTOR 
complex 1 (mTORC1; autophagy suppressor) and the Unc-51-like autophagy-activating kinase 1 (ULK1; auto-
phagy promoter). Our model also includes mediators of autophagy progression such as Atg5, Beclin-1 and UV 
radiation-resistance associated gene (UVRAG) protein and regulatory proteins (e.g. PKA and PKC) that inhibit 
autophagy by phosphorylating LC316.

The above two processes are coupled in multiple ways: (i) UVRAG inhibits Bax, while it interacts with Beclin-1 
to promote autophagy17; (ii) Bcl-2 inhibits autophagy by interacting with Beclin-118, and can be suppressed by 
truncated Atg519; (iii) Bcl-2 also enhances autophagy via its interaction with inositol 1,4,5-trisphosphate recep-
tor (IP3R), an inhibitor of autophagosome formation20; (iii) Activated caspases can cleave Beclin-1 to inhibit 
autophagy21 and C-terminal Beclin-1 fragments enhance apoptosis by promoting the release of cyt c from mito-
chondria22; (iv) Cytoplasmic p53 inhibits autophagy by deactivating AMPK23, while nuclear p53 promotes auto-
phagy via transcriptional activation of damage-regulated autophagy modulator (DRAM) - a lysosomal protein that 
induces autophagy24, and stimulation of JNK signaling pathways to trigger Bcl-2 phosphorylation25; (v) ER stress 
also activates JNK, which phosphorylates (and inactivates) Bcl-226; it also activates DAPK, which dissociates from 
Bcl-2:Beclin-1 complex27; (vi) Activated calpain cleaves Atg5 and Beclin-1 to inhibit autophagy, and truncates Bid 
to induce apoptosis19,28.

mTOR module. Under normal condition, mTORC1 is phosphorylated and active (designated with superscript*); 
mTORC1* binds ULK1 thus preventing its activation, and inactivates the transcription factor EB (TFEB)8, which 
are essential proteins promoting autophagy. Under cellular stress, stimulation of PI3K-AKT-TSC1/2-RHEB path-
way inactivates mTORC1*, leading to the release of ULK1 and activation of autophagy16. In parallel, nutrient 
stress is sensed by AMPK, which inhibits mTORC1 pathways as a mechanism for suppressing cell growth and 
biosynthesis29. Specifically, AMPK releases and thus activates ULK1 which induces autophagy. It also inacti-
vates mTORC1* by triggering the TSC1/2-RHEB cascade and directly phosphorylating a protein (Raptor) in 
mTORC116. Furthermore, AMPK is negatively regulated by cytoplasmic p53 and ULK1* and positively regulated 
by CaMKKβ (see the calcium module)30.

Inositol module. The module is activated upon ligand-binding to G-protein coupled receptors (GPCRs), which 
prompts the dissociation of the α-subunit of the intracellularly bound G protein from the β- and γ-subunits. 
Dissociation of activated Gαs subtype, Gα*, stimulates the production of cyclic AMP (cAMP) upon binding onto 
and activating adenylate cyclase (AC) that catalyzes the conversion of ATP to cAMP. The effects of Gα subtypes 
Gαq and Gαi on AC are implicitly included through model parameters. cAMP blocks autophagy by activating 
the exchange protein EPAC which, in turn, activates the phospholipase Cε (PLCε). PLCε* induces the production 
of IP3 and consequently, the release of Ca2+ from ER upon binding of IP3 to its receptor IP3R, a ligand-gated Ca2+ 
channel, on the ER membrane8.

Calcium module. Ca2+ translocates between the extracellular (EC) space, the cytoplasm and the ER, regu-
lated by voltage-gated and ligand-gated ion channels (e.g. IP3R) and pumps (e.g. SERCA)31. Ca2+(IC) activates 
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CaMKKβ, which phosphorylates (or activates) AMPK to promote autophagy32 (see mTOR module). CaMKKβ 
also activates calpain. Calpain* activates the inositol pathway, inhibits autophagy (by cleaving Atg5)19, and/or 
induce apoptosis by activating Bax33.

Figure 1. Reaction network model for autophagy-apoptosis crosstalk. (a) Schematic illustration of the main 
components and their key interactions. Activating and inhibitory interactions are distinguished by different types 
of arrows. Full names of compounds are given in Supplementary Table S1. (b) A more detailed diagram depicting 
the network of protein-protein and protein-ion/metabolite interactions. The network is composed of five coupled 
modules (calcium, inositol, mTOR, apoptosis and autophagy), shown in different background colors. Solid and 
dashed arrows refer to physical (association/disassociation/translocation) and chemical reactions, respectively. 
The complete list of reactions and interactions is presented in the Supplementary Table S2. Some components 
involved in multiple modules (e.g. AMPK, IP3R, Bcl-2, Bax, Atg5) are shown at multiple places, for clarity. Selected 
compounds/reactions identified as critical mediators of cell response are highlighted in red/blue ellipses.
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The calibrated model reproduces differential dynamics of autophagy and apoptosis in response 
to nutritional-, genotoxic-, and ER-stress. We utilized image-based single-cell experimental data12 
generated in human neuroglioma H4 cells to estimate the unknown parameters. These cells express both the 
GFP-LC3 and histone cluster 2-RFP (H2B-RFP) reporters. The GFP-LC3 reporter delineates cell boundaries and 
also serves as an autophagy marker, while the H2B-RFP reporter was used as a marker of both nuclear boundary 
and apoptosis12. The training data for model calibration is the time courses of autophagy and apoptosis under: 
(i) 10, 40, 80, and 200 nM Torin 1 (or rapamycin, mTOR inhibitor) treatment (Fig. 2a), (ii) 0.02, 0.08, 0.32 and 
2.5 μM staurosporine (STS, cytotoxic reagent that inhibits several kinases including PKC and PKA) treatment 
(Fig. 2b), and (iii) 0.1 and 2.0 μM tunicamycin (ER stress-inducer) (Fig. 2c,d). The resulting kinetic parameters 
are listed in Supplementary Table S2. Figure 2 displays the excellent agreement achieved between the profiles gen-
erated by our simulations (dashed curves) and the experimental data (dots), using the optimized set of parameters.

We next proceeded to the validation of our model. Comparison of experimental12 (left panels; adapted from 
Fig. 5A,B of Xu et al.12) and computational results (right panel) in Fig. 3a demonstrates that our computations 
reproduce the differential dynamics of autophagy and apoptosis observed in the single-cell analysis of H4 cells. 
Specifically, STS-induced stress can stimulate autophagy (dotted curve) and/or apoptosis (solid curve) in the same 
individual cells, and autophagy precedes apoptosis. Under low stress (0.5 μM STS; top diagrams), the onset of 
autophagy protects the cells from death. In contrast, under high-stress conditions (2.0 μM STS; bottom diagrams), 
temporary activation of autophagy (near t = 100 min) is not sufficient to prevent apoptosis: the early autophagic 
response disappears with the cell’s commitment to apoptosis.

Figure 3b shows the comparison of the model-predicted histograms (right panels) with the experimentally 
observed probability densities (left panels) of autophagy (top) and apoptosis (bottom) levels in a population of H4 
cells in response to 0, 10 and 24 h of starvation. 1,000 trajectories were generated in line with the prior distribu-
tions of initial concentrations (see Methods). The simulations accurately reproduce the experimentally observed 
induction of autophagy (and not apoptosis) upon inhibition of mTOR. The distributions predicted in autophagy 
levels of the cells under the same starvation conditions, consistent with experimental observations, indicate that 
the model captures cell-to-cell variability, in addition to the average behavior.

We further validated our model using two additional datasets generated in rat kidney proximal tubular 
(RPTC) cells34 and rat adrenal medulla PC-12 cells35, respectively. Figure 3c shows the corresponding model 
predictions (dashed curves), which quantitatively reproduce the experimentally observed (dots) time courses of 
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Figure 2. Comparison of model predictions with experimental training data. Experimental and simulated time 
evolution of autophagic and apoptotic response of H4 cells to Torin-1 (a), staurosporine (STS) treatment (b), 
and tunicamycin treatment (c,d) are shown. Dashed curves represent the results from simulations; the symbols 
designate the experimental data points extracted from Xu et al.12.
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autophagy and apoptosis of RPTC cells in response to 20 μM cisplatin (ER stress-inducer). Here the autophagy 
level was measured as the densitometry of LC3-II signals in immunoblots; and the apoptosis level was reported 
as the percentage of apoptotic cells assessed by morphological methods34. Figure 3d further shows that the model 
predictions (gray bars) are consistent with the western blotting-based experimental data (blue bars): mainly, 12 
and 24 h treatments with 125 μg/ml colistin (genotoxic stress-inducer) increase the abundance of LC3-II (auto-
phagy marker), activated caspase 3, DRAM, PUMA, Bax, phosphorylated AMPK, and cytoplasmic p53, and have 
an inhibitory effect on the expression of the activated form of mTOR in PC-12 cells.

The above results show that our model predictions quantitatively match not only the training data (H4 cells, 
Fig. 2) but also the independent test data (H4, RPTC, and PC-12 cells, Fig. 3). The slight difference between the 

Figure 3. Validation of the integrated model upon comparison of predictions with independent data 
generated in different cell lines. (a) Experimental and simulated time evolution of autophagic and apoptotic 
responses of a single H4 cell to STS treatment. (b) Experimentally observed probability densities and model-
predicted histograms of autophagy and apoptosis levels in a population of H4 cells in response to 0, 10 and 
24 h of starvation. (c) Experimental and simulated time evolution of autophagic and apoptotic responses of 
RPTC cells to cisplatin treatment. The dashed curves are obtained by computations; symbols designate the 
experimental data points. (d) Experimental and simulated abundance of LC3-II, cleaved caspase 3, DRAM, 
PUMA, Bax, phosphorylated AMPK, and the active form of mTOR in PC-12 cells in response to 12 and 24 h 
colistin treatment. The experimental data in panels a,b,c and d, refer to the results from Xu et al.12, Periyasamy-
Thandavan et al.34, and Zhang et al.35, respectively.
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predicted and measured AMPK* level may be due to the simplifications assumed by our model and further 
refinement is probably necessary. The high predictive-performance of our model benchmarked against these 
diverse testing data establishes the validity of the model and confirms that the model parameters have not been 
overfitted. With that, we now proceed to further investigating and unravelling the major effects and mechanisms 
that regulate autophagy/apoptosis under different stress conditions.

Sensitivity analysis indicates that Ca2+ release from ER, and regulation by p53, calpain, AMPK 
are key determinants of cell fate. We first made a quantitative assessment of the components and reac-
tions that are essential to cell fate decision. To this aim, we used a multi-parametric sensitivity analysis (MPSA) 
based on SMC11 (see Methods). Outputs used as criteria were autophagy and apoptosis levels induced by 0.5 μM 
STS. Figure 4 panels a,b present the global sensitivity values to various reactions, organized by representative 
reactants (labeled in different colors), obtained by varying the kinetic parameters within the ranges listed in the 
Supplementary Table S3.

Components whose kinetics exert strong effects on cell regulation/death are classified into three clusters: those 
influential on (i) both autophagy and apoptosis, (ii) only autophagy, and (iii) only apoptosis. The inositol module 
reactions associated with cAMP-PLCε-IP3-IP3R*-Ca2+-calpain- pathway (highlighted in red ellipses in Fig. 1b) 
emerge as major determinants of both autophagy and apoptosis. This points to the role of [Ca2+(IC)] released 
from the ER as the product of this pathway, which further promotes this pathway as an activator of calpain.

p53 also plays an important role in both apoptosis and autophagy, and couples to Ca2+ signaling via Bcl-2. 
Both Ca2+ and p53 regulate the activation/inhibition of AMPK (dark blue ellipses in Fig. 1b), which, in turn, 
favors autophagy, hence the emergence of the AMPK peak in Fig. 4a.

Beclin-1, like calpain, p53 and AMPK, occupies a central role in the crosstalk between the two pathways. 
Notably, the cleavage of Beclin-1 by caspases inhibits autophagy, and contributes to the overall commitment to 
apoptosis via a positive feedback loop that promotes cyt c release (Fig. 1b). Protease-induced changes of autophagy 
proteins such as Beclin-1, Atg5 have been reported to trigger a switch from autophagic to apoptotic response19,22,28. 
In our model, the autophagy-inhibitory effect of Beclin-1 cleavage is apparent by the sharp (light blue) peak in 
Fig. 4a, while the apoptosis-enhancing effect is eclipsed by that of Bax/tBid-mediated apoptosis-amplifying loop.
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The peaks appearing in both panels a and b of Fig. 4 thus underscore the biphasic behavior of autophagy 
observed in H4 cells in response to increasing STS dosage12. The cell’s first homeostatic response appears to 
induce autophagy at low stress/toxicity but it resorts to apoptosis with increasing stress levels. The onset of apop-
tosis is accompanied by termination of autophagy, hence the observed modest control of autophagy by compo-
nents known to dominate apoptosis.

A schematic description of the flow of information between the key components distinguished in the above 
sensitivity analysis is presented in Fig. 4c. At the center of the diagram is the release of Ca2+ by IP3R fueled by 
a positive feedback loop (blue arrows) involving calpain*, cAMP, and PLCε*. The net effect of this loop is to 
suppress autophagy. However, this effect is countered by Bcl-2 that inhibits the IP3R. Yet, Bcl-2 simultaneously 
suppresses autophagy by inhibiting Beclin-1; whereas calpain* and p53 attenuate the effects of Bcl-2. The diagram 
also points to two competing roles of increased [Ca2+(IC)]: suppression of autophagy through calpain*; and pro-
motion of autophagy, via a feedforward loop that involves CaMKKβ* and AMPK*. The autophagy-upregulating 
role of AMPK* is further reinforced by inhibition of mTORC1 and upregulaton of ULK1; however, AMPK* is 
deactivated by p53. Thus, ER membrane Ca2+ channels (represented here by IP3R), p53, AMPK, calpain, and 
Bcl-2 emerge as master regulators of cell decision between apoptosis and autophagy, their effect being closely 
associated with the modulation of intracellular Ca2+ levels.
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Cytoplasmic Ca2+ functions as a rheostat that fine-tunes the timing of autophagic and apop-
totic responses. We next turn our attention to the mechanism of action of Ca2+(IC). The release of Ca2+ 
from the ER is enabled upon activation of ER membrane receptors by secondary messengers (i.e. IP3R activation 
by IP3). Ca2+ is conversely transferred from the cytoplasm to the ER lumen by ATPase pumps such as sarco/
ER Ca2+-ATPase (SERCA). To investigate the effect of alterations in [Ca2+(IC)] on autophagy regulation, we 
increased in silico the expression level of SERCA and simulated the autophagy profiles in response to low and high 
levels of stresses (Fig. 5). Note that the same effect on [Ca2+(IC)] could alternatively be induced by inhibiting Ca2+ 
channels on cell membrane or ER membrane.

Figure 5a shows the decrease in [Ca2+(IC)] upon increasing [SERCA]0 at low (left) and high (right) stress. 
At low stress, a graded increase in autophagic response is observed in silico (Fig. 5b); whereas under high stress, 
the autophagic response is faster and of shorter duration: it reaches its peak around 10 h, even with moderate 
increases in [SERCA]0, after which it gives way to apoptosis (Fig. 5c), i.e. the onset of apoptosis concurs with the 
weakening of autophagy. A surge in apoptotic response is robustly elicited by the initial reduction in [Ca2+(IC)] in 
accordance with the bistability of apoptosis36, the transition being sharper and faster under high stress. Decrease 
in [Ca2+(IC)] under low stress in silico, on the other hand, exerts a moderate effect on the strength and/or timing 
of apoptotic response (Fig. 5b).

Taken together, our in silico results suggest a ‘rheostat’ mechanism regulated by calcium signaling, which 
enables the cell to fine tune its response to stress. The cell copes with low stress conditions by initiating an auto-
phagic response, if [Ca2+(IC)] is sufficiently low; but if [Ca2+(IC)] is high, the same mediators of cell response 
that otherwise favor autophagy alter the cell commitment toward programmed death, the switch in the behavior 
being sharper and faster under high stress.

Gα signaling and ensuing PLCε activation maintain cytoplasmic Ca2+ level through a positive 
feedback loop. As illustrated in Fig. 1a and summarized in Fig. 4c, [Ca2+(IC)] is regulated by a positive feed-
back loop formed by the G-protein α-subunit that drives cAMP production by AC, and IP3 signaling that in turn 
activates calpain, which further stimulates the inositol pathway, and so on. Here we focus on this effect. To this 
aim, we varied the initial concentration, [AC]0, of AC, and evaluated the effect on cAMP production and ensuing 
stimulation of EPAC and PLCε on [Ca2+(IC)]. We also repeated the simulations under high and low influx of 
Ca2+ to the cytoplasm from other sources, here modulated by varying SERCA levels/activity.

Figurementary Figure S1a shows that knocking down AC leads to a graded reduction in cAMP level as 
expected, the reduction being more pronounced with high [SERCA]0 (100 nM). Of interest is the concurrent 
non-uniform changes in [Ca2+(IC)] (Fig. 6a). [Ca2+(IC)] exhibits a complex time evolution, depending on the 
extent of downregulation of cAMP (or EPAC/PLCε) and upregulation of SERCA: (i) when the supply of Ca2+ is 
sufficiently high (e.g. with [SERCA]0 = 10 nM), [Ca2+(IC)] is bistable; it maintains a high level even with a small 
stimulation of EPAC/PLCε activation via G-protein signaling, but it is severely depleted in the absence of such 
signaling (Fig. 6a), (ii) in the opposite case of an upregulated SERCA which promotes the removal of Ca2+(IC) 
from the cytoplasm into the ER, there is a first decrease in [Ca2+(IC)]; but the suppression of [Ca2+(IC)] cannot be 
sustained due to the restoring effect Gα-signaling after 24 h, approximately. (Fig. 6b). The positive feedback loop 
mediated by calpain and PLCε thus plays a key role in restoring and maintaining the physiological cytoplasmic 
Ca2+ levels. Once Ca2+(IC) is boosted to a certain level, it robustly maintains its level by this cellular feedback.

CaMKKβ shapes the role of cytoplasmic Ca2+ in regulating autophagy. Cytoplasmic Ca2+ plays a 
dual role in autophagy: it inhibits autophagy upon activation of calpain and IP3R; and enhances autophagy upon 
activation of AMPK in a CaMKKβ-dependent manner (respective blue and red arrows in Fig. 4c). This forms an 
incoherent type 1 feedforward loop (I1-FFL), a motif frequently seen in biological networks37. The effect of cyto-
plasmic Ca2+ thus depends on the balance between these opposing actions. Which effect dominates, under which 
conditions? Fig. 5 suggests the dominance of the former (at least in H4 cells under low stress, with [SERCA]0 
varying in the range 1–100 nM), that is, increase in [Ca2+(IC)] suppresses autophagy and promotes apoptosis.

Given the complexity of [Ca2+(IC)] time evolution observed in Fig. 6a,b, we investigated whether there might 
be a reversal in the anti-autophagic/pro-apoptotic effect of Ca2+(IC) increase upon modifying the levels/rates 
of other components/reactions in the calcium signaling module. To this aim, we increased the amount of acti-
vated CaMKKβ. Figure 6c obtained under the same conditions with [SERCA]0 = 77 nM, confirms that increased 
[CaMKKβ]0, which also leads to higher [CaMKKβ*], enhances autophagy. This effect is, however, temporary; 
it disappears after 20–40 hours, as autophagic response gives way to apoptosis. The termination of autophagy is 
expedited (with minimal dependence on [CaMKKβ]) under high stress (Fig. 6d).

To evaluate the overall role of cytoplasmic Ca2+ in regulating autophagy, we define a variable Δ that measures 
the change in autophagy level in response to doubling the steady state level [Ca2+(IC)]∞ of cytoplasmic Ca2+. As 
shown in Fig. 5e, for high [CaMKKβ]0, doubling [Ca2+(IC)]∞ (e.g. by knocking down SERCA) enhances auto-
phagy (Δ > 0). In contrast, for low [CaMKKβ]0, doubling [Ca2+(IC)]∞ results in a decrease in autophagy (Δ < 0) 
(Supplementary Fig. S2).

This analysis implies that whether cytoplasmic Ca2+ up- or down-regulates autophagy depends on the initial 
concentration of CaMKKβ. Figure 6f shows the response curve of Δ as a function of [CaMKKβ]0. While the effect of 
increased Ca2+ levels remains proapoptotic for a broad range of [CaMKKβ]0, beyond a certain (high) level, there is 
a switch to pro-autophagic response. This result suggests that cell types with different levels of CaMKKβ expression 
may exhibit opposite responses to autophagy-modulating drugs (e.g. verapamil) that target [Ca2+(IC)].

In silico simulations reveal potential pharmacological strategies for controlling cell fate. The 
model developed here permits us to interrogate various treatment scenarios and evaluate their efficacies for either 
enhancing autophagy to protect normal cells or enhancing apoptosis to kill cancer cells. Figure 7 illustrates the 
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simulated treatment efficacy of low dose of eight FDA-approved drugs under three different levels of stress. The 
known (major) target and action of each drug are indicated along the left abscissa in Fig. 7. For each level of stress, 
the left column shows the extent of autophagic response, and the right column shows the extent of apoptotic 
response, i.e. odd and even columns represent the predicted fold changes in autophagy and apoptosis levels, 
respectively, in response to drug treatment. In general enhancement of autophagy is accompanied by suppression 
of apoptosis and vice versa, although the individual drugs, under different stress conditions exhibit rather com-
plex effects due to the involvement of their targets in multiple interconnected pathways that may have counter 
effects, as we discuss below.
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Figure 6. Significance of cAMP and CaMKKβ in modulating the response of the cell to varying IC Ca2+ levels. 
The in silico cellular stress is induced by administering a low dose (0.5 µM) of STS, except for panel f where 
[STS] = 2 µM. (a,b) Time evolution of [Ca2+(IC)] under different initial concentrations of AC, for low (a) and 
high (b) [SERCA]. [cAMP] produced by AC varies from 10 (low) to 100 nM (high). (c,d) Simulated development 
of autophagy for 0.01 < [CaMKKβ]0 < 1 nM, under low (c) and high (d) stress. The propensity of the cell for 
autophagy increases with increase in [CaMKKβ]0. (e) Simulated profiles of autophagy (magenta) accompanying 
the changes in [Ca2+(IC)] (red) in the presence of elevated [CaMKKβ]0. The enhancement in autophagy level due 
to change in [Ca2+(IC)]∞ by a factor of 2, is designated by Δ, which is the maximum difference between the two 
curves. (f) Dose-response curve of Δ as a function of [CaMKKβ]0. IC Ca2+ downregulates autophagy in general 
(see Fig. 5) despite the opposing effect of CaMKKβ, except for elevated (>103 nM) [CaMKKβ].
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The mTORC1 inhibitor rapamycin enhances autophagy irrespective of the stress level, and has practically no 
effect on apoptosis. This is consistent with experimental observations using H4 cell line (neuroglioma)38.

AMPK was distinguished here as a key up-regulator of autophagy, and upregulating AMPK enhances auto-
phagy and may slightly hinders apoptosis due the elimination of the stress by autophagy (Supplementary Fig. S3). 
Metformin is known to upregulate AMPK, while a recent study also indicate that metformin downregulates 
the expression of Bcl-2 and upregulates the expression of Bax39. Inclusion of these promiscuous effects of met-
formin in the model, led to either simultaneous enhancement of autophagy and apoptosis or enhanced apopto-
sis but suppressed autophagy, depending on the strength of pro-apoptotic effects of metformin on a particular 
cell line (Fig. 7). These results are consistent with the observations that metformin promote autophagy and 
apoptosis in esophageal squamous cell carcinoma40, while promoting apoptosis but suppressing autophagy in 
glucose-deprived H4IIE hepatocellular carcinoma cells41. The model thus permits us to better assess the effects of 
promiscuous drugs, or interpret their polypharmacological effects.

Spautin-1, an inhibitor of Beclin-1, effectively suppresses autophagy under all conditions and its effect on 
apoptosis is minimal, except for low stress conditions. This is consistent with the experimental observations in H4 
cells and Madin-Darby canine kidney epithelia (MDCK) cells42.

BH3 mimetics (which disrupts the interaction between Bcl-2 and Beclin-1), verapamil (which lowers 
[Ca2+(IC)]), clonidine (which lowers [cAMP]), and lithium (which lowers [IP3]) have similar actions and effi-
cacies. Under low level of stress, they enhance autophagy and suppress apoptosis, while for medium and high 
levels of stress, they essentially enhance autophagy. BH3 mimetics (e.g. ABT-737) have been reported to induce 
autophagy for multiple cell lines (e.g. HeLa, U2OS, HCT116)43,44, suggesting that the interaction between Bcl-2 
and Beclin-1 might be a robust drug target for enhancing autophagy. Both verapamil and clonidine have been 
shown to induce autophagy in PC12 cells45. Our prediction is also consistent with the observation that with the 
same dosage (1 µM), verapamil induces a higher level of autophagy than does clonidine. The role of lithium on 
inducing autophagy has been demonstrated in H4 cells and PC12 cells46,47.

Interestingly, PUMA inhibition shows remarkable pro-survival effects: it enhances autophagy and suppresses 
apoptosis under all conditions. This is consistent with the results from sensitivity analysis which highlighted 
the strong inhibitory effect of apoptosis on autophagy (via the cleavage of Beclin-1 by caspases). It implies that 
radiation mitigators may enhance pro-survival autophagy in injured cells to further prevent cell death. PUMA 
inhibitors have been shown to efficiently inhibit apoptosis using multiple cell lines48, while their upregulation of 
autophagy requires further confirmation.

Taken together, these results indicate that: (i) to protect normal cells against stress-induced cell death, upreg-
ulation of AMPK, which simultaneously activates multiple downstream autophagic pathways, and inhibition of 
PUMA48, could be highly efficacious strategies; (ii) In contrast, Beclin-1 inhibitors such as spautin-1 may improve 
the efficacy of apoptosis-inducers and may be advantageously used for pre-empting autophagic response and 
enabling the elimination of cancer cells with high apoptotic thresholds.

Discussion
Autophagy has been referred to as a form of programmed cell death in several studies, named as ‘autophagic cell 
death’ (ACD) or ‘type II cell-death’, since programmed cell death was often associated with enhanced autophagy 
and depended on autophagy-associated proteins to a certain context49. However, recent evidence led to a debate 
on the existence of ACD7,50. Our current understanding is that though ACD exists in rare situations, a more gen-
eral scenario is that autophagy precedes apoptosis in the same cell in order to adapt to or cope with non-lethal 
stress1, and apoptosis occurs when the stress exceeds a critical threshold of intensity or duration6. The present 
study provides firm quantitative description in support of the validity of this interplay between autophagy and 
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apoptosis. In most cases, autophagy and apoptosis mutually inhibit each other and the onsets of autophagy and 
apoptosis are governed by cell fate decision processes that have broad pathophysiological implications6,51. We 
presented here a calibrated computational model (Fig. 1) for the kinetics of autophagic and apoptotic pathways 
crosstalk, which successfully reproduces a wealth of experimental data (Figs 2 and 3), and provides a computing 
platform for generating new hypotheses, including the predictions presented in Figs 4–7.

Our analysis identified a core regulatory network for autophagic and apoptotic responses (Fig. 4c). Specifically, 
cytoplasmic Ca2+, p53, AMPK, calpain, Beclin-1, and Bcl-2 emerged as key components whose expression and/or 
activities significantly affect cell decision. Ca2+ and p53 act as master regulators that tightly control cell decisions 
through AMPK and Bax activation pathways, respectively. Cleavage of Beclin-1 by caspases confers a concrete 
switch from autophagy to apoptosis. A positive feedback loop formed by components in the Gα signaling and 
inositol pathways including calpain is critical to exerting the pro-apoptotic effect of [Ca2+(IC)], which in parallel 
maintains a graded autophagic response through a feedforward loop mediated by CaMKKβ and AMPK. Our 
model also predicts that the CaMKKβ activation may act as a determinant of the dual/opposite roles of cyto-
plasmic Ca2+ as well as treatment efficacy. While increased [Ca2+(IC)] usually inhibits autophagy (in favor of 
apoptosis), this effect can be reversed in cells that express high levels of CaMKKβ.

Previous modeling works have focused on apoptosis52–54. Recent progress on modeling of autophagy either 
focused on specific modules such as autophagic vesicle dynamics55 and mTORC1-ULK1 interaction56 or used 
over-simplified networks57,58. In a recent study59, a relatively larger cancer-specific model of 13 ODEs has been 
built and calibrated. Unfortunately, the model has not been further advanced and thus no new knowledge has 
been derived so far from that model.

Here, we have developed a first comprehensive and calibrated kinetic model of the autophagy-apoptosis cross-
talk. Our model consists of 94 components which cover many important stress-sensing pathways (Fig. 1b). The 
model is generic, and its parameters can be calibrated to capture the pathway activation/dynamics in specific 
cell types based e.g., on single-cell dynamical protein expression profiles. We have demonstrated that our model 
was able to reproduce single-cell and population-based measurements of autophagic and apoptotic responses of 
human neuroglioma cells, rat kidney proximal tubular cells, and rat adrenal medulla cells under nutritional, gen-
otoxic, and ER stresses (Figs 2 and 3). LC3 is a widely used marker for autophagosome formation. However, both 
GFP-LC3 and LC3-II suffer from limitations as measures of autophagy level60. Fluorescence microscopy based 
GFP-LC3 approach also suffers from the difficulties of quantifying puncta number and distinguishing GFP-LC3 
aggregates from true autophagosomes, while LC3-II measured in biochemical assays presumably include some 
population of LC3-II generated in an autophagosome-independent manner. To overcome these limitations, we 
have validated our model using both GFP-LC3 (Fig. 3a,b) and LC3-II (Fig. 3c,d) data. We have demonstrated that 
our calibrated model serves as a platform for gaining insights into the underlying time-dependent interactions 
(Figs 4–6), as well as interrogating the network of interactions and cell fate decisions toward determining treat-
ment strategies in favor of autophagy (for healthy cells under stress) or apoptosis (for cancer cells) (Fig. 6).

Live imaging and single-cell analysis have indicated that autophagy proceeds via a graded dynamics whereas 
apoptosis onset obeys a switch-like behavior12. However, the underlying mechanism remained unclear. Our pre-
vious work13 has shown that the positive feedback loop, Bax* → caspase → tBid → Bax*, is critical to sustaining 
caspase activity, and thereby controlling the switch-like dynamics of apoptosis. This positive feedback loop is also 
observed here to be responsible for the all-or-none bimodal dynamics of apoptosis in the presence of the coupling 
to autophagic pathways, as it mediates the pro-apoptotic effects associated with other components such as calpain 
and Ca2+(IC). As autophagy precedes apoptosis, it could start eliminating dysfunctional entities when the stress 
levels are not sufficiently high to trigger the caspase/tBid feedback loop. Autophagic events thus delay, if not pre-
vent, apoptosis (maintaining ‘off ’ state). This points to the importance of intervention timing for pre-empting the 
potential commitment of the cell to apoptosis, while the cell is disposing dysfunctional elements via autophagy.

When the stress level or duration reaches an apoptotic threshold, the positive feedback loop that ensures the 
sustained caspase cascade and the apoptotic machinery switches from ‘off ’ to ‘on’ state. Upon committing to apop-
tosis, the cell shuts down autophagy and recruits other proteins (otherwise involved in both autophagic and apop-
totic events) to promote apoptosis. Previous work57 hypothesized that this change in course is mainly due to the 
cleavage of Beclin-1 by caspase. Our sensitivity analysis corroborates that Beclin-1 cleavage by caspases is of utmost 
importance (Fig. 4a). However, our sensitivity analysis also highlights other important players and interactions. In 
particular, a unique incoherent type 1 feedforward loop (I1-FFL) involving CaMKKβ, AMPK, calpain, cAMP and 
IP3R emerged here as a determinant of [Ca2+(IC)], and consequently up- or down-regulation of autophagy. A dual 
role of Ca2+(IC) in autophagy emerges from a large number of contradicting evidences31. Elevated levels of Ca2+ 
have been reported to promote autophagy, while inhibitors of intracellular Ca2+ currents have been also found to 
promote autophagy61. Our results indicate that the balance between the two (red and blue) branches in Fig. 4c defines 
the decision/fate of the cell. Calpain is part of the cAMP-mediated positive feedback loop for sustaining [Ca2+(IC)]; 
it also activates apoptosis via Bid activation. Thus, its complex role hinders calpain as a modulator to shape the role 
of Ca2+(IC). Controlling CaMKKβ levels on the other hand emerges as a viable therapeutic strategy.

CaMKKβ is a versatile regulator of the CaMKs and involved in regulating many cellular processes such as glu-
cose homeostasis and inflammation32. The expression of CaMKKβ varies in different cell types and tissues. Our 
results imply that overexpression of CaMKKβ can switch cytoplasmic Ca2+ from an inhibitor to an enhancer of 
autophagy (Fig. 6f). Ca2+(IC)-modulating drugs (e.g. verapamil) should thus be used in a cell/context-dependent 
manner, since the expression and activity level of CaMKKβ might influence the drug’s efficacy. Recent evidence 
indicates that CaMKKβ is expressed at very low levels in normal prostate, but accumulates in prostate cancer 
cells62. Consequently, enhanced activation of the CaMKKβ-AMPK pathway may increase autophagy and elevate 
the threshold for the onset of apoptosis, and thereby prevent the elimination of prostate cancer cells. In such 
context, Ca2+(IC)-reducing drugs might be potentially used in combination with apoptosis-inducers to suppress 
autophagy and enhance apoptosis.
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Calcium is released from the ER by ryanodine receptors, too63. The opening of ryanodine receptors is trig-
gered by ADP ribose. This mechanism is similar to the IP3R-dependent calcium release, thus in our model, IP3R 
may be viewed as a membrane protein representative of ligand-gated receptors that release calcium from the ER, 
including RYR. Further, sources of Ca2+ intake from the EC region include voltage-gated calcium channels and 
ligand-gated receptors such as NMDA receptors and PMCA (and Na+/Ca2+ exchangers) that pump Ca2+ from 
the cytosol to the EC region64. In the current model, we implicitly modeled these processes by assuming constant 
level of Ca2+ intake from the EC medium, but these proteins actually represent alternative targets for modulating 
autophagic responses via altering Ca2+ levels. Extension of the current model to explicitly include these com-
ponents and their interactions will increase the utility of the model as a platform for designing and evaluating 
alternative treatment strategies.

Methods
Mathematical modeling. The dynamics of the reaction network (Fig. 1b) was modeled as a system of 94 
ODEs. The reactions and associated parameters are presented in Supplementary Table S2. Reaction rates for pro-
tein association, disassociation, catalysis, transcriptional regulation and decay were modeled using mass action 
kinetics. The cell-to-cell variability was addressed by assuming probability distributions over the initial con-
centration and rate constants (see Supplementary SI Methods for details). We defined the apoptosis score as a 
normalized value of [caspase*]. The integration of apoptosis score over time was then used to predict apoptotic 
cell percentage. We defined the autophagy score as a normalized value of [autophagosome]. In silico single-cell 
analysis (Fig. 3a) was performed by drawing a random sample from the distributions of initial states, while in 
silico population-based analysis was performed by drawing a representative set of samples (i.e. 1,000 samples for 
Fig. 3b, 100 samples for Figs 2, 3c,d, 5–7) from the distributions of initial states. The ODE system was solved using 
SUNDAILS package65.

Model calibration and sensitivity analysis. Parameter estimation and global sensitivity analysis were 
performed with statistical model checking (SMC)-based methods11 (see Supplementary SI Methods for details). 
We encoded the training data (Fig. 2) as a bounded linear temporal logic (BLTL) formula to construct an objec-
tive function and used our SMC tool to sample prior distributions of parameters and search for parameters with 
the global minimum objective values in the parameter space. The global sensitivity analysis was performed with 
a SMC-based MPSA method11. We encoded the training data on autophagy (Fig. 2a,c) and apoptosis levels 
(Fig. 2b,d) separately as BLTL formulae to construct two objective functions. A representative set of samples were 
drawn from the parameter space and classified into two groups based on their corresponding objective values 
computed using our SMC tool. The reported global sensitivities were calculated as the Kolmogorov-Smirnov 
statistics of cumulative frequency curves associated with the two groups.
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