73 research outputs found

    Ozone measurements from a global network of surface sites

    Get PDF
    From a network of surface ozone monitoring sites distributed primarily over the Atlantic and Pacific Oceans, the seasonal, day-to-day, and diurnal patterns are delineated. At most of the NH (Northern Hemisphere) sites there is a spring maximum and late summer or autumn minimum. At Barrow, AK (70 deg N) and Barbados (14 deg N), however, there is a winter maximum, but the mechanisms producing the maximum are quite different. All the sites in the SH (Southern Hemisphere) show winter maxima and summer minima. At the subtropical and tropical sites, there are large day-to-day variations that reflect the changes in flow patterns. Air of tropical origin has much lower ozone concentrations than air from higher latitudes. At the two tropical sites (Barbados and Samoa), there is a marked diurnal ozone variation with highest amounts in the early morning and lowest values in the afternoon. At four of the locations (Barrow, AK; Mauna Loa, HI; American Samoa; and South Pole), there are 15- through 20-year records which allow us to look at longer term changes. At Barrow there has been a large summer increase over the 20 years of measurements. At South Pole, on the other hand, summer decreases have led to an overall decline in surface ozone amounts

    Springtime surface ozone fluctuations at high Arctic latitudes and their possible relationship to atmospheric bromine

    Get PDF
    At high Arctic stations such as Barrow, Alaska, springtime near-surface ozone amounts fluctuate between the highest and lowest values seen during the course of the year. Episodes when the surface ozone concentration is essentially zero last up to several days during this time of year. In the Arctic Gas and Aerosol Sampling Program (AGASP-I and AGASP-II) in 1983 and 1986, it was found that ozone concentrations often showed a very steep gradient in altitude with very low values near the surface. The cold temperatures, and snow-covered ground make it unlikely that the surface itself would rapidly destroy significant amounts of ozone. The AGASP aircraft measurements that found low ozone concentrations in the lowest layers of the troposphere also found that filterable excess bromine (the amount of bromine in excess of the sea salt component) in samples collected wholly or partially beneath the temperature inversion had higher bromine concentrations than other tropospheric samples. Of the four lowest ozone minimum concentrations, three of them were associated with the highest bromine enrichments. Surface measurements of excess filterable bromine at Barrow show a strong seasonal dependence with values rising dramatically early in March, then declining in May. The concentration of organic bromine gases such as bromoform rise sharply during the winter and then begin to decline after March with winter and early spring values at least three times greater than the summer minimum

    Ozone profile observations in Houston, Texas (1994 - 2010) from aircraft, balloons, and satellites

    Get PDF
    Houston, Texas has long been an urban area plagued with high levels of surface ozone, particularly in spring and late summer. The combination of a large commuter population and one of the largest concentrations of petrochemical plants in the world results in abundant and nearly co-located sources of NOx and hydrocarbons. The location of Houston on the South Coast of the United States in a subtropical climate results in meteorological conditions that favor ozone production. Using MOZAIC (1994 - 2004), ozonesonde (2000, 2004 - 2010), and TES (2005 – 2010) data, we examine the evolution of ozone profiles over Houston during a period in which various strategies have been implemented to alleviate the ozone pollution problem. Using meteorological data from associated soundings and analyses, we identify and evaluate influences on the ozone profiles from natural and anthropogenic sources, as well as local and remote sources. We further investigate how these various influences have changed with time

    Carbon monoxide measurements at Mace Head, Ireland

    Get PDF
    The North Atlantic Ocean is bordered by continents which may each, under the influence of seasonal weather patterns, act as sources of natural and anthropogenic trace gas and particulate species. Photochemically active species such as carbon monoxide (CO) react to form ozone (O3), a species of critical importance in global climate change. CO is sparingly soluble in water, and the relatively long lifetime of CO in the troposphere makes this species an ideal tracer of air masses with origin over land. We have measured CO using a nondispersive infrared gas filter correlation analyzer at Mace Head on the west coast of Ireland nearly continuously since August 9, 1991. Measurements of CO were acquired at 20-sec resolution and recorded as 60-sec averages. Daily, monthly, and diurnal variation data characteristics of CO mixing ratios observed at this site are reported. Depending on source regions of air parcels passing over this site, 60-min concentrations of CO range from clean air values of approximately 90 ppbv to values in excess of 300 ppbv. Data characterizing the correlation between 60-min CO and O3 mixing ratio data observed at this site are reported also

    Climate variability modulates western US ozone air quality in spring via deep stratospheric intrusions

    Get PDF
    Evidence suggests deep stratospheric intrusions can elevate western US surface ozone to unhealthy levels during spring. These intrusions can be classified as ‘exceptional events’, which are not counted towards non-attainment determinations. Understanding the factors driving the year-to-year variability of these intrusions is thus relevant for effective implementation of the US ozone air quality standard. Here we use observations and model simulations to link these events to modes of climate variability. We show more frequent late spring stratospheric intrusions when the polar jet meanders towards the western United States, such as occurs following strong La Niña winters (Niño3.4<−1.0 °C). While El Niño leads to enhancements of upper tropospheric ozone, we find this influence does not reach surface air. Fewer and weaker intrusion events follow in the two springs after the 1991 volcanic eruption of Mt. Pinatubo. The linkage between La Niña and western US stratospheric intrusions can be exploited to provide a few months of lead time during which preparations could be made to deploy targeted measurements aimed at identifying these exceptional events

    South Pole Station ozonesondes: variability and trends in the springtime Antarctic ozone hole 1986&ndash;2021

    Get PDF
    Balloon-borne ozonesondes launched weekly from South Pole station (1986&ndash;2021) measure high vertical resolution profiles of ozone and temperature from surface to 30&ndash;35 km altitude. The launch frequency is increased in late winter before the onset of rapid stratospheric ozone loss in September. Ozone hole metrics show the yearly total column ozone and 14&ndash;21 km column ozone minimum values and September loss rates remain on an upward (less severe) trend since 2001. However, the data series also illustrate interannual variability, especially in the last three years (2019&ndash;2021). Here we show additional details of these three years by comparing minimum ozone profiles and the July&ndash;December 14&ndash;21 km column ozone time series. The 2019 anomalous vortex breakdown showed stratospheric temperatures began warming in early September leading to reduced ozone loss. The minimum total column ozone of 180 Dobson Units (DU) was observed on 24 September. This was followed by two stable and cold polar vortex years in 2020 and 2021 with total column ozone minimums at 104 DU (01 October) and 102 DU (07 October), respectively. These years also showed broad zero ozone (saturation loss) regions within the 14&ndash;21 km layer by the end of September which persisted into October. Validation of the ozonesonde observations is conducted through the ongoing comparison of total column ozone (TCO) measurements with the South Pole ground-based Dobson spectrophotometer. The ozonesondes show a constant positive offset of 2 &plusmn; 3 % (higher) than the Dobson following a thorough evaluation/homogenization of the ozonesonde record in 2018.</p

    Estimating Wildfire-Generated Ozone over North America Using Ozonesonde Profiles and a Differential Back Trajectory Technique

    Get PDF
    An objective method, employing HYSPLIT back-trajectories and Moderate Resolution Imaging Spectroradiometer (MODIS) fire observations, is developed to estimate ozone enhancement in air transported from regions of active forest fires at 18 ozone sounding sites located across North America. The Differential Back Trajectory (DBT) method compares mean differences between ozone concentrations associated with fire-affected and fire-unaffected parcels. It is applied to more than 1100 ozonesonde profiles collected from these sites during the summer months June to August 2006, 2008, 2010 and 2011. Layers of high ozone associated with low humidity were first removed from the ozonesonde profiles to minimize the potential effects of stratospheric intrusions on the calculations. No significant influence on average ozone levels by North American fires was found for stations located at Arctic latitudes. The ozone enhancement for stations nearer large fires, such as Trinidad Head and Bratt\u27s Lake, was up to 4.8% of the TTOC (Total Tropospheric Ozone Column). Fire ozone accounted for up to 8.3% of TTOC at downwind sites such as Yarmouth, Sable Island, Narragansett, and Walsingham. The results are consistent with other studies that have reported an increase in ozone production with the age of the smoke plume

    Springtime high surface ozone events over the western United States: Quantifying the role of stratospheric intrusions

    Get PDF
    The published literature debates the extent to which naturally occurring stratospheric ozone intrusions reach the surface and contribute to exceedances of the U.S. National Ambient Air Quality Standard (NAAQS) for ground-level ozone (75 ppbv implemented in 2008). Analysis of ozonesondes, lidar, and surface measurements over the western U.S. from April to June 2010 show that a global high-resolution (∼50 × 50 km2) chemistry-climate model (GFDL AM3) captures the observed layered features and sharp ozone gradients of deep stratospheric intrusions, representing a major improvement over previous chemical transport models. Thirteen intrusions enhanced total daily maximum 8-h average (MDA8) ozone to ∼70–86 ppbv at surface sites. With a stratospheric ozone tracer defined relative to a dynamically varying tropopause, we find that stratospheric intrusions can episodically increase surface MDA8 ozone by 20–40 ppbv (all model estimates are bias corrected), including on days when observed ozone exceeds the NAAQS threshold. These stratospheric intrusions elevated background ozone concentrations (estimated by turning off North American anthropogenic emissions in the model) to MDA8 values of 60–75 ppbv. At high-elevation western U.S. sites, the 25th–75th percentile of the stratospheric contribution is 15–25 ppbv when observed MDA8 ozone is 60–70 ppbv, and increases to ∼17–40 ppbv for the 70–85 ppbv range. These estimates, up to 2–3 times greater than previously reported, indicate a major role for stratospheric intrusions in contributing to springtime high-O3events over the high-altitude western U.S., posing a challenge for staying below the ozone NAAQS threshold, particularly if a value in the 60–70 ppbv range were to be adopted
    corecore