20 research outputs found

    A phase Ib study evaluating the recommended phase II dose, safety, tolerability, and efficacy of mivavotinib in combination with nivolumab in advanced solid tumors

    Get PDF
    \ua9 2024 The Authors. Cancer Medicine published by John Wiley & Sons Ltd.Mivavotinib (TAK-659/CB-659), a dual SYK/FLT3 inhibitor, reduced immunosuppressive immune cell populations and suppressed tumor growth in combination with anti-PD-1 therapy in cancer models. This dose-escalation/expansion study investigated the safety, pharmacokinetics, pharmacodynamics, and preliminary efficacy of mivavotinib plus nivolumab in patients with advanced solid tumors. Patients received oral mivavotinib 60–100 mg once-daily plus intravenous nivolumab 3 mg/kg on days 1 and 15 in 28-day cycles until disease progression or unacceptable toxicity. The dose-escalation phase evaluated the recommended phase II dose (RP2D; primary endpoint). The expansion phase evaluated overall response rate (primary end point) at the RP2D in patients with triple-negative breast cancer (TNBC). During dose-escalation (n = 24), two dose-limiting toxicities (grade 4 lipase increased and grade 3 pyrexia) occurred in patients who received mivavotinib 80 mg and 100 mg, respectively. The determined RP2D was once-daily mivavotinib 80 mg plus nivolumab 3 mg/kg. The expansion phase was terminated at ~50% enrollment (n = 17) after failing to meet an ad hoc efficacy futility threshold. Among all 41 patients, common treatment-emergent adverse events (TEAEs) included dyspnea (48.8%), aspartate aminotransferase increased, and pyrexia (46.3% each). Common grade ≄3 TEAEs were hypophosphatemia and anemia (26.8% each). Mivavotinib plasma exposure was generally dose-proportional (60–100 mg). One patient had a partial response. Mivavotinib 80 mg plus nivolumab 3 mg/kg was well tolerated with no new safety signals beyond those of single-agent mivavotinib or nivolumab. Low response rates highlight the challenges of treating unresponsive tumor types, such as TNBC, with this combination and immunotherapies in general. Trial registration ID: NCT02834247

    Combined Tumor Cell-Based Vaccination and Interleukin-12 Gene Therapy Polarizes the Tumor Microenvironment in Mice

    Get PDF
    Tumor progression depends on tumor milieu, which influences neovasculature formation and immunosuppression. Combining immunotherapy with antiangiogenic/antivascular therapy might be an effective therapeutic approach. The aim of our study was to elaborate an anticancer therapeutic strategy based on the induction of immune response which leads to polarization of tumor milieu. To achieve this, we developed a tumor cell-based vaccine. CAMEL peptide was used as a B16-F10 cell death-inducing agent. The lysates were used as a vaccine to immunize mice bearing B16-F10 melanoma tumors. To further improve the therapeutic effect of the vaccine, we combined it with interleukin (IL)-12 gene therapy. IL-12, a cytokine with antiangiogenic properties, activates nonspecific and specific immune responses. We observed that combined therapy is significantly more effective (as compared with monotherapies) in inhibiting tumor growth. Furthermore, the tested combination polarizes the tumor microenvironment, which results in a switch from a proangiogenic/immunosuppressive to an antiangiogenic/immunostimulatory one. The switch manifests itself as a decreased number of tumor blood vessels, increased levels of tumor-infiltrating CD4+, CD8+ and NK cells, as well as lower level of suppressor lymphocytes (Treg). Our results suggest that polarizing tumor milieu by such combined therapy does inhibit tumor growth and seems to be a promising therapeutic strategy
    corecore