11,411 research outputs found

    Entanglement between the future and past in the quantum vacuum

    Get PDF
    We note that massless fields within the future and past light cone may be quantized as independent systems. We show that the vacuum is an entangled state of these systems, exactly mirroring the known entanglement between the spacelike separated Rindler wedges. We describe a detector which exhibits a thermal response to the vacuum when switched on at t=0. The feasibility of experimentally detecting this effect is discussed.Comment: 4 pages, 1 figur

    Unsupervised decoding of long-term, naturalistic human neural recordings with automated video and audio annotations

    Get PDF
    Fully automated decoding of human activities and intentions from direct neural recordings is a tantalizing challenge in brain-computer interfacing. Most ongoing efforts have focused on training decoders on specific, stereotyped tasks in laboratory settings. Implementing brain-computer interfaces (BCIs) in natural settings requires adaptive strategies and scalable algorithms that require minimal supervision. Here we propose an unsupervised approach to decoding neural states from human brain recordings acquired in a naturalistic context. We demonstrate our approach on continuous long-term electrocorticographic (ECoG) data recorded over many days from the brain surface of subjects in a hospital room, with simultaneous audio and video recordings. We first discovered clusters in high-dimensional ECoG recordings and then annotated coherent clusters using speech and movement labels extracted automatically from audio and video recordings. To our knowledge, this represents the first time techniques from computer vision and speech processing have been used for natural ECoG decoding. Our results show that our unsupervised approach can discover distinct behaviors from ECoG data, including moving, speaking and resting. We verify the accuracy of our approach by comparing to manual annotations. Projecting the discovered cluster centers back onto the brain, this technique opens the door to automated functional brain mapping in natural settings

    Simulations of Spinodal Nucleation in Systems with Elastic Interactions

    Full text link
    Systems with long-range interactions quenched into a metastable state near the pseudospinodal exhibit nucleation that is qualitatively different than the classical nucleation observed near the coexistence curve. We have observed nucleation droplets in our Langevin simulations of a two-dimensional model of martensitic transformations and have determined that the structure of the nucleating droplet differs from the stable martensite structure. Our results, together with experimental measurements of the phonon dispersion curve, allow us to predict the nature of the droplet. These results have implications for nucleation in many solid-solid transitions and the structure of the final state

    Nonequilibrium Approach to Bloch-Peierls-Berry Dynamics

    Get PDF
    We examine the Bloch-Peierls-Berry dynamics under a classical nonequilibrium dynamical formulation. In this formulation all coordinates in phase space formed by the position and crystal momentum space are treated on equal footing. Explicitly demonstrations of the no (naive) Liouville theorem and of the validity of Darboux theorem are given. The explicit equilibrium distribution function is obtained. The similarities and differences to previous approaches are discussed. Our results confirm the richness of the Bloch-Peierls-Berry dynamics

    Extraction of timelike entanglement from the quantum vacuum

    Get PDF
    An intriguing property of the massless quantum vacuum state is that it contains entanglement between both spacelike and timelike separated regions of space-time. The implications of timelike entanglement and its connection to standard entanglement, however, are unexplored. Here we show that timelike entanglement can be extracted from the massless Minkowski vacuum and converted into standard entanglement "at a given time" between two inertial, two-state detectors at the same spatial location: one coupled to the field in the past and the other coupled to the field in the future. The procedure used here demonstrates a time correlation as a requirement for extraction; e. g., if the past detector was active at a quarter to 12:00, then the future detector must wait to become active at precisely a quarter past 12:00 in order to achieve entanglement

    Comparison of Measured and Calculated Specific Resistances of Pd/Pt Interfaces

    Full text link
    We compare specific resistances (AR equals area A times resistance R) of sputtered Pd/Pt interfaces measured in two different ways with no-free-parameter calculations. One way gives 2AR(Pd/Pt) of 0.29 (0.03) fohm-m(2) and the other 0.17 (0.13) fohm-m(2). From these we derive a best estimate of 2AR(Pd/Pt) of 0.28 (0.06) fohm-m(2), which overlaps with no-free-parameter calculations: 2AR(predicted) of 0.30 (0.04) fohm-m(2) for flat, perfect interfaces, or 0.33 (0.04) fohm-m(2) for interfaces composed of 2 monolayers of a 50percent-50percent PdPt alloy. These results support three prior examples of agreement between calculations and measurements for pairs of metals having the same crystal structure and the same lattice parameter to within 1 percent. We also estimate the spin-flipping probability at Pd/Pt interfaces as 0.13 (0.08).Comment: 3 pages, 3 figures, submitted for publication New version has corrected value of delta(Pd/Pt

    The Impact of NLO-Corrections on the Determination of the $\bar{u},\bar{d} Content of Nucleons from Drell-Yan Production

    Full text link
    The interpretation of Drell-Yan production in terms of the antiquark densities depends on NLO corrections. Besides the NLO corrections to the familiar annihilation qqˉ→γ∗→l+l−q\bar{q}\to \gamma^* \to l^+ l^-, there is a substantial contribution from the QCD Compton subprocesses gq→qγ∗→ql+l−gq \to q\gamma^* \to q l^+ l^- and gqˉ→qγ∗→ql+l−g\bar{q} \to q\gamma^* \to q l^+ l^-. The beam and target dependence of the two classes of corrections is different. We discuss the impact of this difference on the determination of the dˉ−uˉ\bar{d}-\bar{u} asymmetry in the proton from the comparison of the pppp and pnpn Drell-Yan production.Comment: 4 pages, 1 eps-figure. To be published in Proceedings of DIS'9

    Dynamical Ordering of Driven Stripe Phases in Quenched Disorder

    Full text link
    We examine the dynamics and stripe formation in a system with competing short and long range interactions in the presence of both an applied dc drive and quenched disorder. Without disorder, the system forms stripes organized in a labyrinth state. We find that, when the disorder strength exceeds a critical value, an applied dc drive can induce a dynamical stripe ordering transition to a state that is more ordered than the originating undriven, unpinned pattern. We show that signatures in the structure factor and transport properties correspond to this dynamical reordering transition, and we present the dynamic phase diagram as a function of strengths of disorder and dc drive.Comment: 4 pages, 4 postscript figure

    Moving Wigner Glasses and Smectics: Dynamics of Disordered Wigner Crystals

    Full text link
    We examine the dynamics of driven classical Wigner solids interacting with quenched disorder from charged impurities. For strong disorder, the initial motion is plastic -- in the form of crossing winding channels. For increasing drive, the disordered Wigner glass can reorder to a moving Wigner smectic -- with the electrons moving in non-crossing 1D channels. These different dynamic phases can be related to the conduction noise and I(V) curves. For strong disorder, we show criticality in the voltage onset just above depinning. We also obtain the dynamic phase diagram for driven Wigner solids and prove that there is a finite threshold for transverse sliding, recently found experimentally.Comment: 4 pages, 4 postscript figure
    • …
    corecore