20,507 research outputs found

    Permo-Triassic vertebrate extinctions: A program

    Get PDF
    Since the time of the Authors' study on this subject, a great deal of new information has become available. Concepts of the nature of extinctions have changed materially. The Authors' conclusion that a catastrophic event was not responsible for the extinction of vertebrates has modified to the extent that hypotheses involving either the impact of a massive extra-terrestrial body or volcanism provide plausible but not currently fully testable hypotheses. Stated changes resulted in a rapid decrease in organic diversity, as the ratio of origins of taxa to extinctions shifted from strongly positive to negative, with momentary equilibrium being reached at about the Permo-Triassic boundary. The proximate causes of the changes in the terrestrial biota appear to lie in two primary factors: (1) strong climatic changes (global mean temperatures, temperature ranges, humidity) and (2) susceptibility of the dominant vertebrates (large dicynodonts) and the glossopteris flora to disruption of the equlibrium of the world ecosystem. The following proximate causes have been proposed: (1) rhythmic fluctuations in solar radiation, (2) tectonic events as Pangea assembled, altering land-ocean relationships, patterns of wind and water circulation and continental physiography, (3) volcanism, and (4) changes subsequent to impacts of one or more massive extra terrestrial objects, bodies or comets. These hypotheses are discussed

    Pre-visual detection of stress in pine forests

    Get PDF
    Pre-visual, or early, detection of forest stress with particular reference to detection of attacks by pine bark beetles is discussed. Preliminary efforts to obtain early detection of attacks by pine bark beetles, using MSS data from the ERIM M-7 scanner, were not sufficiently successful to demonstrate an operational capability, but indicate that joint processing of the 0.71 to 0.73, 2.00 to 2.60, and 9.3 to 11.7 micrometer bands holds some promise. Ratio processing of transformed data from the 0.45 to 0.52, 1.55 to 2.60, and 4.5 to 5.5 or 9.3 to 11.7 micrometer regions appears even more promising

    Forest Species Identification with High Spectral Resolution Data

    Get PDF
    Data collected over the Sleeping Bear Sand Dunes Test Site and the Saginaw Forest Test Site (Michigan) with the JPL Airborne Imaging Spectrometer and the Collins' Airborne Spectroradiometer are being used for forest species identification. The linear discriminant function has provided higher identification accuracies than have principal components analyses. Highest identification accuracies are obtained in the 450 to 520 nm spectral region. Spectral bands near 1,300, 1,685 and 2,220 nm appear to be important, also

    The Ontological Basis of Strong Artificial Life

    Get PDF
    This article concerns the claim that it is possible to create living organisms, not merely models that represent organisms, simply by programming computers ("virtual" strong alife). I ask what sort of things these computer-generated organisms are supposed to be (where are they, and what are they made of?). I consider four possible answers to this question: (a) The organisms are abstract complexes of pure information; (b) they are material objects made of bits of computer hardware; (c) they are physical processes going on inside the computer; and (d) they are denizens of an entire artificial world, different from our own, that the programmer creates. I argue that (a) could not be right, that (c) collapses into (b), and that (d) would make strong alife either absurd or uninteresting. Thus, "virtual" strong alife amounts to the claim that, by programming a computer, one can literally bring bits of its hardware to life

    Statics and Dynamics of Vortex Liquid Crystals

    Full text link
    Using numerical simulations we examine the static and dynamic properties of the recently proposed vortex liquid crystal state. We confirm the existence of a smectic-A phase in the absence of pinning. Quenched disorder can induce a smectic state even at T=0. When an external drive is applied, a variety of anisotropic dynamical flow states with distinct voltage signatures occur, including elastic depinning in the hard direction and plastic depinning in the easy direction. We discuss the implications of the anisotropic transport for other systems which exhibit depinning phenomena, such as stripes and electron liquid crystals.Comment: 4 pages, 4 postscript figure

    Confirmatory Factor Analysis of Farm Size and Performance

    Get PDF
    Replaced with revised version of poster 08/03/10.Farm size, farm performance, SEM models, Agricultural Finance, Farm Management,

    Jamming in Systems With Quenched Disorder

    Full text link
    We numerically study the effect of adding quenched disorder in the form of randomly placed pinning sites on jamming transitions in systems that jam at a well defined point J in the clean limit. Quenched disorder decreases the jamming density and introduces a depinning threshold. The onset of a finite threshold coincides with point J at the lowest pinning densities, but for higher pinning densities there is always a finite threshold even well below jamming. We find that proximity to point J strongly affects the transport curves and noise fluctuations, and observe a change from plastic behavior below jamming, where the system is highly heterogeneous, to elastic depinning above jamming. Many of the general features we find are related to other systems containing quenched disorder, including the peak effect observed in vortex systems.Comment: 5 pages, 4 postscript figure

    Remote sensing of changes in morphology and physiology of trees under stress Annual progress report

    Get PDF
    Remote sensing of morphological and physiological changes in trees under stres

    Study of an attitude reference system utilizing an electrically suspended gyro final report, 1 aug. 1964 - 31 mar. 1965

    Get PDF
    Miniature electrically suspended gyroscope for spacecraft attitude reference syste

    Leading-edge slat optimization for maximum airfoil lift

    Get PDF
    A numerical procedure for determining the position (horizontal location, vertical location, and deflection) of a leading edge slat that maximizes the lift of multielement airfoils is presented. The structure of the flow field is calculated by iteratively coupling potential flow and boundary layer analysis. This aerodynamic calculation is combined with a constrained function minimization analysis to determine the position of a leading edge slat so that the suction peak on the nose of the main airfoil is minized. The slat position is constrained by the numerical procedure to ensure an attached boundary layer on the upper surface of the slat and to ensure negligible interaction between the slat wake and the boundary layer on the upper surface of the main airfoil. The highest angle attack at which this optimized slat position can maintain attached flow on the main airfoil defines the optimum slat position for maximum lift. The design method is demonstrated for an airfoil equipped with a leading-edge slat and a trailing edge, single-slotted flap. The theoretical results are compared with experimental data, obtained in the Ames 40 by 80 Foot Wind Tunnel, to verify experimentally the predicted slat position for maximum lift. The experimentally optimized slat position is in good agreement with the theoretical prediction, indicating that the theoretical procedure is a feasible design method
    • …
    corecore