24,069 research outputs found

    Jamming in Granular Polymers

    Full text link
    We examine the jamming transition in a two-dimensional granular polymer system using compressional simulations. The jamming density \phi_c decreases with increasing length of the granular chain due to the formation of loop structures, in excellent agreement with recent experiments. The jamming density can be further reduced in mixtures of granular chains and granular rings, also as observed in experiment. We show that the nature of the jamming in granular polymer systems has pronounced differences from the jamming behavior observed for polydisperse two-dimensional disk systems at Point J. This result provides further evidence that there is more than one type of jamming transition.Comment: 5 pages, 7 postscript figures, version to appear in PR

    Aerodynamic characteristics of the 40- by 80/80- by 120-foot wind tunnel at NASA Ames Research Center

    Get PDF
    The design and testing of vane sets and air-exchange inlet for the 40 x 80/80 x 120-ft wind tunnel at NASA Ames are reported. Boundary-layer analysis and 2D and 3D inviscid panel codes are employed in computer models of the system, and a 1/10-scale 2D facility and a 1/50-scale 3D model of the entire wind tunnel are used in experimental testing of the vane sets. The results are presented in graphs, photographs, drawings, and diagrams are discussed. Generally good agreement is found between the predicted and measured performance

    Plasma Sterilization Technology for Spacecraft Applications

    Get PDF
    The application of plasma gas technology to sterilization and decontamination of spacecraft components is considered. Areas investigated include: effective sterilizing ranges of four separate gases; lethal constituents of a plasma environment; effectiveness of plasma against a diverse group of microorganisms; penetrating efficiency of plasmas for sterilization; and compatibility of spacecraft materials with plasma environments. Results demonstrated that plasma gas, specifically helium plasma, is a highly effective sterilant and is compatible with spacecraft materials

    Controlled Ecological Life Support Systems (CELSS) physiochemical waste management systems evaluation

    Get PDF
    Parametric data for six waste management subsystems considered for use on the Space Station are compared, i.e.: (1) dry incineration; (2) wet oxidation; (3) supercritical water oxidation; (4) vapor compression distillation; (5) thermoelectric integrated membrane evaporation system; and (6) vapor phase catalytic ammonia removal. The parameters selected for comparison are on-orbit weight and volume, resupply and return to Earth logistics, power consumption, and heat rejection. Trades studies are performed on subsystem parameters derived from the most recent literature. The Boeing Engineering Trade Study (BETS), an environmental control and life support system (ECLSS) trade study computer program developed by Boeing Aerospace Company, is used to properly size the subsystems under study. The six waste treatment subsystems modeled in this program are sized to process the wastes for a 90-day Space Station mission with an 8-person crew, and an emergency supply period of 28 days. The resulting subsystem parameters are compared not only on an individual subsystem level but also as part of an integrated ECLSS

    Flagellar membrane association via interaction with lipid rafts

    Get PDF
    The eukaryotic flagellar membrane has a distinct composition from other domains of the plasmalemma. Our work shows that the specialized composition of the trypanosome flagellar membrane reflects increased concentrations of sterols and saturated fatty acids, correlating with direct observation of high liquid order by laurdan fluorescence microscopy. These findings indicate that the trypanosome flagellar membrane possesses high concentrations of lipid rafts: discrete regions of lateral heterogeneity in plasma membranes that serve to sequester and organize specialized protein complexes. Consistent with this, a dually acylated Ca(2+) sensor that is concentrated in the flagellum is found in detergent-resistant membranes and mislocalizes if the lipid rafts are disrupted. Detergent-extracted cells have discrete membrane patches localized on the surface of the flagellar axoneme, suggestive of intraflagellar transport particles. Together, these results provide biophysical and biochemical evidence to indicate that lipid rafts are enriched in the trypanosome flagellar membrane, providing a unique mechanism for flagellar protein localization and illustrating a novel means by which specialized cellular functions may be partitioned to discrete membrane domains

    NMR Dynamics Investigation of Ligand-Induced Changes of Main and Side-Chain Arginine N-H’s in Human Phosphomevalonate Kinase

    Get PDF
    Phosphomevalonate kinase (PMK) catalyzes phosphoryl transfer from adenosine triphosphate (ATP) to mevalonate 5-phosphate (M5P) on the pathway for synthesizing cholesterol and other isoprenoids. To permit this reaction, its substrates must be brought proximal, which would result in a significant and repulsive buildup of negative charge. To facilitate this difficult task, PMK contains 17 arginines and eight lysines. However, the way in which this charge neutralization and binding is achieved, from a structural and dynamics perspective, is not known. More broadly, the role of arginine side-chain dynamics in binding of charged substrates has not been experimentally defined for any protein to date. Herein we report a characterization of changes to the dynamical state of the arginine side chains in PMK due to binding of its highly charged substrates, ATP and M5P. These studies were facilitated by the use of arginine-selective labeling to eliminate spectral overlap. Model-free analysis indicated that while substrate binding has little effect on the arginine backbone dynamics, binding of either substrate leads to significant rigidification of the arginine side chains throughout the protein, even those that are \u3e8 Ã… from the binding site. Such a global rigidification of arginine side chains is unprecedented and suggests that there are long-range electrostatic interactions of sufficient strength to restrict the motion of arginine side chains on the picosecond-to-nanosecond time scale. It will be interesting to see whether such effects are general for arginine residues in proteins that bind highly charged substrates, once additional studies of arginine side-chain dynamics are reported
    • …
    corecore