534 research outputs found

    Effect of FET geometry on charge ordering of transition metal oxides

    Full text link
    We examine the effect of an FET geometry on the charge ordering phase diagram of transition metal oxides using numerical simulations of a semiclassical model including long-range Coulomb fields, resulting in nanoscale pattern formation. We find that the phase diagram is unchanged for insulating layers thicker than approximately twice the magnetic correlation length. For very thin insulating layers, the onset of a charge clump phase is shifted to lower values of the strength of the magnetic dipolar interaction, and intermediate diagonal stripe and geometric phases can be suppressed. Our results indicate that, for sufficiently thick insulating layers, charge injection in an FET geometry can be used to experimentally probe the intrinsic charge ordering phases in these materials.Comment: 4 pages, 4 postscript figure

    Targeting Conservation Investments in Heterogeneous Landscapes: A distance function approach and application to watershed management

    Get PDF
    To achieve a given level of an environmental amenity at least cost, decision-makers must integrate information about spatially variable biophysical and economic conditions. Although the biophysical attributes that contribute to supplying an environmental amenity are often known, the way in which these attributes interact to produce the amenity is often unknown. Given the difficulty in converting multiple attributes into a unidimensional physical measure of an environmental amenity (e.g., habitat quality), analyses in the academic literature tend to use a single biophysical attribute as a proxy for the environmental amenity (e.g., species richness). A narrow focus on a single attribute, however, fails to consider the full range of biophysical attributes that are critical to the supply of an environmental amenity. Drawing on the production efficiency literature, we introduce an alternative conservation targeting approach that relies on distance functions to cost-efficiently allocate conservation funds across a spatially heterogeneous landscape. An approach based on distance functions has the advantage of not requiring a parametric specification of the amenity function (or cost function), but rather only requiring that the decision-maker identify important biophysical and economic attributes. We apply the distance-function approach empirically to an increasingly common, but little studied, conservation initiative: conservation contracting for water quality objectives. The contract portfolios derived from the distance-function application have many desirable properties, including intuitive appeal, robust performance across plausible parametric amenity measures, and the generation of ranking measures that can be easily used by field practitioners in complex decision-making environments that cannot be completely modeled. Working Paper # 2002-01

    Targeting Toll-like receptor-4 to tackle preterm birth and fetal inflammatory injury

    Get PDF
    Every year, 15 million pregnancies end prematurely, resulting in more than 1 million infant deaths and long-term health consequences for many children. The physiological processes of labour and birth involve essential roles for immune cells and pro-inflammatory cytokines in gestational tissues. There is compelling evidence that the mechanisms underlying spontaneous preterm birth are initiated when a premature and excessive inflammatory response is triggered by infection or other causes. Exposure to pro-inflammatory mediators is emerging as a major factor in the 'fetal inflammatory response syndrome' that often accompanies preterm birth, where unscheduled effects in fetal tissues interfere with normal development and predispose to neonatal morbidity. Toll-like receptors (TLRs) are critical upstream gatekeepers of inflammatory activation. TLR4 is prominently involved through its ability to sense and integrate signals from a range of microbial and endogenous triggers to provoke and perpetuate inflammation. Preclinical studies have identified TLR4 as an attractive pharmacological target to promote uterine quiescence and protect the fetus from inflammatory injury. Novel small-molecule inhibitors of TLR4 signalling, specifically the non-opioid receptor antagonists (+)-naloxone and (+)-naltrexone, are proving highly effective in animal models for preventing preterm birth induced by bacterial mimetic LPS, heat-killed Escherichia coli, or the TLR4-dependent pro-inflammatory lipid, platelet-activating factor (PAF). Here, we summarise the rationale for targeting TLR4 as a master regulator of inflammation in fetal and gestational tissues, and the potential utility of TLR4 antagonists as candidates for preventative and therapeutic application in preterm delivery and fetal inflammatory injury.Sarah A Robertson, Mark R Hutchinson, Kenner C Rice, Peck-Yin Chin, Lachlan M Moldenhauer, Michael J Stark, David M Olson, Jeffrey A Keela

    Effects of columnar disorder on flux-lattice melting in high-temperature superconductors

    Full text link
    The effect of columnar pins on the flux-lines melting transition in high-temperature superconductors is studied using Path Integral Monte Carlo simulations. We highlight the similarities and differences in the effects of columnar disorder on the melting transition in YBa2_2Cu3_3O7δ_{7-\delta} (YBCO) and the highly anisotropic Bi2_2Sr2_2CaCu2_2O8+δ_{8+\delta} (BSCCO) at magnetic fields such that the mean separation between flux-lines is smaller than the penetration length. For pure systems, a first order transition from a flux-line solid to a liquid phase is seen as the temperature is increased. When adding columnar defects to the system, the transition temperature is not affected in both materials as long as the strength of an individual columnar defect (expressed as a flux-line defect interaction) is less than a certain threshold for a given density of randomly distributed columnar pins. This threshold strength is lower for YBCO than for BSCCO. For higher strengths the transition line is shifted for both materials towards higher temperatures, and the sharp jump in energy, characteristic of a first order transition, gives way to a smoother and gradual rise of the energy, characteristic of a second order transition. Also, when columnar defects are present, the vortex solid phase is replaced by a pinned Bose glass phase and this is manifested by a marked decrease in translational order and orientational order as measured by the appropriate structure factors. For BSCCO, we report an unusual rise of the translational order and the hexatic order just before the melting transition. No such rise is observed in YBCO.Comment: 32 pages, 13 figures, revte

    Genomic Deletion Marking an Emerging Subclone of Francisella tularensis subsp. holarctica in France and the Iberian Peninsula

    Get PDF
    P. 7465-7470Francisella tularensis subsp. holarctica is widely disseminated in North America and the boreal and temperate regions of the Eurasian continent. Comparative genomic analyses identified a 1.59-kb genomic deletion specific to F. tularensis subsp. holarctica isolates from Spain and France. Phylogenetic analysis of strains carrying this deletion by multiple-locus variable-number tandem repeat analysis showed that the strains comprise a highly related set of genotypes, implying that these strains were recently introduced or recently emerged by clonal expansion in France and the Iberian PeninsulaS

    Spin-Charge Separation in the tJt-J Model: Magnetic and Transport Anomalies

    Full text link
    A real spin-charge separation scheme is found based on a saddle-point state of the tJt-J model. In the one-dimensional (1D) case, such a saddle-point reproduces the correct asymptotic correlations at the strong-coupling fixed-point of the model. In the two-dimensional (2D) case, the transverse gauge field confining spinon and holon is shown to be gapped at {\em finite doping} so that a spin-charge deconfinement is obtained for its first time in 2D. The gap in the gauge fluctuation disappears at half-filling limit, where a long-range antiferromagnetic order is recovered at zero temperature and spinons become confined. The most interesting features of spin dynamics and transport are exhibited at finite doping where exotic {\em residual} couplings between spin and charge degrees of freedom lead to systematic anomalies with regard to a Fermi-liquid system. In spin dynamics, a commensurate antiferromagnetic fluctuation with a small, doping-dependent energy scale is found, which is characterized in momentum space by a Gaussian peak at (π/a\pi/a, π/a \pi/a) with a doping-dependent width (δ\propto \sqrt{\delta}, δ\delta is the doping concentration). This commensurate magnetic fluctuation contributes a non-Korringa behavior for the NMR spin-lattice relaxation rate. There also exits a characteristic temperature scale below which a pseudogap behavior appears in the spin dynamics. Furthermore, an incommensurate magnetic fluctuation is also obtained at a {\em finite} energy regime. In transport, a strong short-range phase interference leads to an effective holon Lagrangian which can give rise to a series of interesting phenomena including linear-TT resistivity and T2T^2 Hall-angle. We discuss the striking similarities of these theoretical features with those found in the high-TcT_c cuprates and give aComment: 70 pages, RevTex, hard copies of 7 figures available upon request; minor revisions in the text and references have been made; To be published in July 1 issue of Phys. Rev. B52, (1995

    Sleep-Related Falling Out of Bed in Parkinson's Disease

    Get PDF
    Background and purposeSleep-related falling out of bed (SFOB), with its potential for significant injury, has not been a strong focus of investigation in Parkinson's disease (PD) to date. We describe the demographic and clinical characteristics of PD patients with and without SFOB.MethodsWe performed a retrospective analysis of 50 consecutive PD patients, who completed an REM sleep behavior disorder screening questionnaire (RBDSQ), questionnaires to assess for RBD clinical mimickers and questions about SFOB and resulting injuries. Determination of high risk for RBD was based on an RBDSQ score of 5 or greater.ResultsThirteen patients reported history of SFOB (26%). Visual hallucinations, sleep-related injury, quetiapine and amantadine use were more common in those patients reporting SFOB. Twenty-two patients (44%) fulfilled criteria for high risk for RBD, 12 of which (55%) reported SFOB. Five patients reported injuries related to SFOB. SFOB patients had higher RBDSQ scores than non-SFOB patients (8.2±3.0 vs. 3.3±2.0, p<0.01). For every one unit increase in RBDSQ score, the likelihood of SFOB increased two-fold (OR 2.4, 95% CI 1.3-4.2, p<0.003).ConclusionsSFOB may be a clinical marker of RBD in PD and should prompt confirmatory polysomnography and pharmacologic treatment to avoid imminent injury. Larger prospective studies are needed to identify risk factors for initial and recurrent SFOB in PD
    corecore