898 research outputs found

    Ventilation history of Nordic Seas overflows during the last (de)glacial period revealed by species-specific benthic foraminiferal 14C dates

    Get PDF
    Formation of deep water in the high-latitude North Atlantic is important for the global meridional ocean circulation, and its variability in the past may have played an important role in regional and global climate change. Here we study ocean circulation associated with the last (de)glacial period, using water-column radiocarbon age reconstructions in the Faroe-Shetland Channel, southeastern Norwegian Sea, and from the Iceland Basin, central North Atlantic. The presence of tephra layer Faroe Marine Ash Zone II, dated to ~26.7 ka, enables us to determine that the middepth (1179 m water depth) and shallow subsurface reservoir ages were ~1500 and 1100 14C years, respectively, older during the late glacial period compared to modern, suggesting substantial suppression of the overturning circulation in the Nordic Seas. During the late Last Glacial Maximum and the onset of deglaciation (~20–18 ka), Nordic Seas overflow was weak but active. During the early deglaciation (~17.5–14.5 ka), our data reveal large differences between 14C ventilation ages that are derived from dating different benthic foraminiferal species: Pyrgo and other miliolid species yield ventilation ages >6000 14C years, while all other species reveal ventilation ages <2000 14C years. These data either suggest subcentennial, regional, circulation changes or that miliolid-based 14C ages are biased due to taphonomic or vital processes. Implications of each interpretation are discussed. Regardless of this “enigma,” the onset of the Bølling-Allerød interstadial (14.5 ka) is clearly marked by an increase in middepth Nordic Seas ventilation and the renewal of a stronger overflow

    The implication of identifying JAK2V617F in myeloproliferative neoplasms and myelodysplastic syndromes with bone marrow fibrosis

    Get PDF
    The myeloproliferative neoplasms (MPN) and myelodysplastic syndromes (MDS) occasionally demonstrate overlapping morphological features including hypercellularity, mild/nonspecific dysplastic changes and variable bone marrow fibrosis. Thus, when the associated bone marrow fibrosis results in a suboptimal specimen for morphological evaluation, the descriptive diagnosis “fibrotic marrow with features indeterminate for MDS versus MPN” is often applied. The JAK2V617F mutation was recently shown to be frequently identified in MPN, but it is rarely present in other myeloid disorders. However, the diagnostic utility of JAK2V617F screening in hypercellular bone marrow specimens with fibrosis has not been previously investigated. Using a real-time polymerase chain reaction melting-curve assay capable of detecting JAK2V617F in archived fixed materials, we retrospectively studied JAK2V617F in 45 cases with fibrotic hypercellular bone marrow at initial presentation, including 19 cases initially described as “with features indeterminate for MDS versus MPN”. These 19 cases were reclassified into more specific categories of MDS (n = 14) or MPN (n = 5) based on the availability of subsequent clinical data and/or bone marrow examinations. The JAK2V617F allele was identified in 17 out of 18 BCR/ABL gene-negative MPN cases with marrow fibrosis, whereas only wild-type alleles were identified in the remaining non-MPN cases. Importantly, JAK2V617F alleles were seen in all five cases of “with features indeterminate for MDS versus MPN” at initial presentation that were later determined to be MPN, but they were absent in the 14 cases later determined to be MDS. Our results suggest that JAK2V617F allele evaluation can be a useful ancillary test for discriminating MDS from MPN in specimens with bone marrow fibrosis

    A Combination of Independent Transcriptional Regulators Shapes Bacterial Virulence Gene Expression during Infection

    Get PDF
    Transcriptional regulatory networks are fundamental to how microbes alter gene expression in response to environmental stimuli, thereby playing a critical role in bacterial pathogenesis. However, understanding how bacterial transcriptional regulatory networks function during host-pathogen interaction is limited. Recent studies in group A Streptococcus (GAS) suggested that the transcriptional regulator catabolite control protein A (CcpA) influences many of the same genes as the control of virulence (CovRS) two-component gene regulatory system. To provide new information about the CcpA and CovRS networks, we compared the CcpA and CovR transcriptomes in a serotype M1 GAS strain. The transcript levels of several of the same genes encoding virulence factors and proteins involved in basic metabolic processes were affected in both ΔccpA and ΔcovR isogenic mutant strains. Recombinant CcpA and CovR bound with high-affinity to the promoter regions of several co-regulated genes, including those encoding proteins involved in carbohydrate and amino acid metabolism. Compared to the wild-type parental strain, ΔccpA and ΔcovRΔccpA isogenic mutant strains were significantly less virulent in a mouse myositis model. Inactivation of CcpA and CovR alone and in combination led to significant alterations in the transcript levels of several key GAS virulence factor encoding genes during infection. Importantly, the transcript level alterations in the ΔccpA and ΔcovRΔccpA isogenic mutant strains observed during infection were distinct from those occurring during growth in laboratory medium. These data provide new knowledge regarding the molecular mechanisms by which pathogenic bacteria respond to environmental signals to regulate virulence factor production and basic metabolic processes during infection

    Postural development in school children: a cross-sectional study

    Get PDF
    BACKGROUND: Little information on quantitative sagittal plane postural alignment and evolution in children exists. The objectives of this study are to document the evolution of upright, static, sagittal posture in children and to identify possible critical phases of postural evolution (maturation). METHODS: A total of 1084 children (aged 4–12 years) received a sagittal postural evaluation with the Biotonix postural analysis system. Data were retrieved from the Biotonix internet database. Children were stratified and analyzed by years of age with n = 36 in the youngest age group (4 years) and n = 184 in the oldest age group (12 years). Children were analyzed in the neutral upright posture. Variables measured were sagittal translation distances in millimeters of: the knee relative to the tarsal joint, pelvis relative to the tarsal joint, shoulder relative to the tarsal joint, and head relative to the tarsal joint. A two-way factorial ANOVA was used to test for age and gender effects on posture, while polynomial trend analyses were used to test for increased postural displacements with years of age. RESULTS: Two-way ANOVA yielded a significant main effect of age for all 4 sagittal postural variables and gender for all variables except head translation. No age × gender interaction was found. Polynomial trend analyses showed a significant linear association between child age and all four postural variables: anterior head translation (p < 0.001), anterior shoulder translation (p < 0.001), anterior pelvic translation (p < 0.001), anterior knee translation (p < 0.001). Between the ages of 11 and 12 years, for anterior knee translation, T-test post hoc analysis revealed only one significant rough break in the continuity of the age related trend. CONCLUSION: A significant linear trend for increasing sagittal plane postural translations of the head, thorax, pelvis, and knee was found as children age from 4 years to 12 years. These postural translations provide preliminary normative data for the alignment of a child's sagittal plane posture

    The Pioneer Anomaly

    Get PDF
    Radio-metric Doppler tracking data received from the Pioneer 10 and 11 spacecraft from heliocentric distances of 20-70 AU has consistently indicated the presence of a small, anomalous, blue-shifted frequency drift uniformly changing with a rate of ~6 x 10^{-9} Hz/s. Ultimately, the drift was interpreted as a constant sunward deceleration of each particular spacecraft at the level of a_P = (8.74 +/- 1.33) x 10^{-10} m/s^2. This apparent violation of the Newton's gravitational inverse-square law has become known as the Pioneer anomaly; the nature of this anomaly remains unexplained. In this review, we summarize the current knowledge of the physical properties of the anomaly and the conditions that led to its detection and characterization. We review various mechanisms proposed to explain the anomaly and discuss the current state of efforts to determine its nature. A comprehensive new investigation of the anomalous behavior of the two Pioneers has begun recently. The new efforts rely on the much-extended set of radio-metric Doppler data for both spacecraft in conjunction with the newly available complete record of their telemetry files and a large archive of original project documentation. As the new study is yet to report its findings, this review provides the necessary background for the new results to appear in the near future. In particular, we provide a significant amount of information on the design, operations and behavior of the two Pioneers during their entire missions, including descriptions of various data formats and techniques used for their navigation and radio-science data analysis. As most of this information was recovered relatively recently, it was not used in the previous studies of the Pioneer anomaly, but it is critical for the new investigation.Comment: 165 pages, 40 figures, 16 tables; accepted for publication in Living Reviews in Relativit

    Activation Mobilizes the Cholesterol in the Late Endosomes-Lysosomes of Niemann Pick Type C Cells

    Get PDF
    A variety of intercalating amphipaths increase the chemical activity of plasma membrane cholesterol. To test whether intracellular cholesterol can be similarly activated, we examined NPC1 and NPC2 fibroblasts, since they accumulate large amounts of cholesterol in their late endosomes and lysosomes (LE/L). We gauged the mobility of intracellular sterol from its appearance at the surface of the intact cells, as determined by its susceptibility to cholesterol oxidase and its isotope exchange with extracellular 2-(hydroxypropyl)-β-cyclodextrin-cholesterol. The entire cytoplasmic cholesterol pool in these cells was mobile, exchanging with the plasma membrane with an apparent half-time of ∼3–4 hours, ∼4–5 times slower than that for wild type human fibroblasts (half-time ∼0.75 hours). The mobility of the intracellular cholesterol was increased by the membrane-intercalating amphipaths chlorpromazine and 1-octanol. Chlorpromazine also promoted the net transfer of LE/L cholesterol to serum and cyclodextrin. Surprisingly, the mobility of LE/L cholesterol was greatly stimulated by treating intact NPC cells with glutaraldehyde or formaldehyde. Similar effects were seen with wild type fibroblasts in which the LE/L cholesterol pool had been expanded using U18666A. We also showed that the cholesterol in the intracellular membranes of fixed wild-type fibroblasts was mobile; it was rapidly oxidized by cholesterol oxidase and was rapidly replenished by exogenous sterol. We conclude that a) the cholesterol in NPC cells can exit the LE/L (and the extensive membranous inclusions therein) over a few hours; b) this mobility is stimulated by the activation of the cholesterol with intercalating amphipaths; c) intracellular cholesterol is even more mobile in fixed cells; and d) amphipaths that activate cholesterol might be useful in treating NPC disease
    corecore