12 research outputs found

    A Spitzer c2d Legacy Survey to Identify and Characterize Disks with Inner Dust Holes

    Get PDF
    Understanding how disks dissipate is essential to studies of planet formation. However, identifying exactly how dust and gas dissipates is complicated due to difficulty in finding objects clearly in the transition of losing their surrounding material. We use Spitzer IRS spectra to examine 35 photometrically-selected candidate cold disks (disks with large inner dust holes). The infrared spectra are supplemented with optical spectra to determine stellar and accretion properties and 1.3mm photometry to measure disk masses. Based on detailed SED modeling, we identify 15 new cold disks. The remaining 20 objects have IRS spectra that are consistent with disks without holes, disks that are observed close to edge-on, or stars with background emission. Based on these results, we determine reliable criteria for identifying disks with inner holes from Spitzer photometry and examine criteria already in the literature. Applying these criteria to the c2d surveyed star-forming regions gives a frequency of such objects of at least 4% and most likely of order 12% of the YSO population identified by Spitzer. We also examine the properties of these new cold disks in combination with cold disks from the literature. Hole sizes in this sample are generally smaller than for previously discovered disks and reflect a distribution in better agreement with exoplanet orbit radii. We find correlations between hole size and both disk and stellar masses. Silicate features, including crystalline features, are present in the overwhelming majority of the sample although 10 micron feature strength above the continuum declines for holes with radii larger than ~7 AU. In contrast, PAHs are only detected in 2 out of 15 sources. Only a quarter of the cold disk sample shows no signs of accretion, making it unlikely that photoevaporation is the dominant hole forming process in most cases.Comment: 24 pages, 18 figures and 8 tables. Fixed a typo in Table

    The Cell Adhesion Molecule “CAR” and Sialic Acid on Human Erythrocytes Influence Adenovirus In Vivo Biodistribution

    Get PDF
    Although it has been known for 50 years that adenoviruses (Ads) interact with erythrocytes ex vivo, the molecular and structural basis for this interaction, which has been serendipitously exploited for diagnostic tests, is unknown. In this study, we characterized the interaction between erythrocytes and unrelated Ad serotypes, human 5 (HAd5) and 37 (HAd37), and canine 2 (CAV-2). While these serotypes agglutinate human erythrocytes, they use different receptors, have different tropisms and/or infect different species. Using molecular, biochemical, structural and transgenic animal-based analyses, we found that the primary erythrocyte interaction domain for HAd37 is its sialic acid binding site, while CAV-2 binding depends on at least three factors: electrostatic interactions, sialic acid binding and, unexpectedly, binding to the coxsackievirus and adenovirus receptor (CAR) on human erythrocytes. We show that the presence of CAR on erythrocytes leads to prolonged in vivo blood half-life and significantly reduced liver infection when a CAR-tropic Ad is injected intravenously. This study provides i) a molecular and structural rationale for Ad–erythrocyte interactions, ii) a basis to improve vector-mediated gene transfer and iii) a mechanism that may explain the biodistribution and pathogenic inconsistencies found between human and animal models

    A Spitzer c2d Legacy Survey to Identify and Characterize Disks with Inner Dust Holes

    No full text
    International audienceUnderstanding how disks dissipate is essential to studies of planet formation. However, identifying exactly how dust and gas dissipate is complicated due to the difficulty of finding objects that are clearly in the transition phase of losing their surrounding material. We use Spitzer Infrared Spectrograph (IRS) spectra to examine 35 photometrically selected candidate cold disks (disks with large inner dust holes). The infrared spectra are supplemented with optical spectra to determine stellar and accretion properties and 1.3 mm photometry to measure disk masses. Based on detailed spectral energy distribution modeling, we identify 15 new cold disks. The remaining 20 objects have IRS spectra that are consistent with disks without holes, disks that are observed close to edge-on, or stars with background emission. Based on these results, we determine reliable criteria to identify disks with inner holes from Spitzer photometry, and examine criteria already in the literature. Applying these criteria to the c2d surveyed star-forming regions gives a frequency of such objects of at least 4% and most likely of order 12% of the young stellar object population identified by Spitzer. We also examine the properties of these new cold disks in combination with cold disks from the literature. Hole sizes in this sample are generally smaller than in previously discovered disks and reflect a distribution in better agreement with exoplanet orbit radii. We find correlations between hole size and both disk and stellar masses. Silicate features, including crystalline features, are present in the overwhelming majority of the sample, although the 10 mu m feature strength above the continuum declines for holes with radii larger than similar to 7 AU. In contrast, polycyclic aromatic hydrocarbons are only detected in 2 out of 15 sources. Only a quarter of the cold disk sample shows no signs of accretion, making it unlikely that photoevaporation is the dominant hole-forming process in most cases
    corecore