1,352 research outputs found

    Unfolding dynamics of proteins under applied force

    Get PDF
    Understanding the mechanisms of protein folding is a major challenge that is being addressed effectively by collaboration between researchers in the physical and life sciences. Recently, it has become possible to mechanically unfold proteins by pulling on their two termini using local force probes such as the atomic force microscope. Here, we present data from experiments in which synthetic protein polymers designed to mimic naturally occurring polyproteins have been mechanically unfolded. For many years protein folding dynamics have been studied using chemical denaturation, and we therefore firstly discuss our mechanical unfolding data in the context of such experiments and show that the two unfolding mechanisms are not the same, at least for the proteins studied here. We also report unexpected observations that indicate a history effect in the observed unfolding forces of polymeric proteins and explain this in terms of the changing number of domains remaining to unfold and the increasing compliance of the lengthening unstructured polypeptide chain produced each time a domain unfolds

    Apparent Fracture in Polymeric Fluids under Step Shear

    Get PDF
    Recent step strain experiments in well-entangled polymeric liquids demonstrated a bulk fracture-like phenomenon. We have studied this instability using a modern version of the Doi-Edwards theory for entangled polymers, and we find close quantitative agreement with the experiments. The phenomenon occurs because the viscoelastic liquid is sheared into a rubbery state that possesses an elastic constitutive instability (Marrucci and Grizzuti, 1983). The fracture is a transient manifestation of this instability, which relies on the amplification of spatially inhomogeneous fluctuations. This mechanism differs from fracture in glassy materials and dense suspensions.Comment: 5 pages,3 figures. Accepted in the Physical Review Letter

    Limnological, Ichthyological, and Parasitological Investigations on Arkansas Reservoris in Relation to Water Quality

    Get PDF
    Lake Fort Smith, a 525 acre (212 ha) reservoir, was impounded in 1936 as a water supply for the city of Fort Smith. The reservoir is located on Clear Creek (Frog Bayou), a tributary of the Arkansas River, in the Boston Mountains 28 miles (45 km) northeast of the city of Fort Smith in Crawford County, Arkansas. A map and morphometric characteristics of Lake Fort Smith are given in Fig. 1 and Table I (Hoffman, 1951; Nelson, 1952). In 1956 Lake Shepherd Springs, a 750 acre (304 ha) impoundment, was created one mile upstream of Lake Fort Smith (Rorie, 1961). Both lakes have a shale substrate and are subject to periods of high turbidity. The 2 two lakes have a water shed of 65 square mile area (168 km ) of mountainous oak-hickory forest. Lake Shepherd Springs has not acted as a settling basin for sediments; thus, the upper portion of Lake Fort Smith has numerous shallow areas with a mud bottom supporting various submergent and emergent aquatic plants. The lower portion of the lake has a rocky, shale substrate with only limited emergent vegetation

    Coarse-grained simulations of flow-induced nucleation in semi-crystalline polymers

    Full text link
    We perform kinetic Monte Carlo simulations of flow-induced nucleation in polymer melts with an algorithm that is tractable even at low undercooling. The configuration of the non-crystallized chains under flow is computed with a recent non-linear tube model. Our simulations predict both enhanced nucleation and the growth of shish-like elongated nuclei for sufficiently fast flows. The simulations predict several experimental phenomena and theoretically justify a previously empirical result for the flow-enhanced nucleation rate. The simulations are highly pertinent to both the fundamental understanding and process modeling of flow-induced crystallization in polymer melts.Comment: 17 pages, 6 eps figure

    Loss of solutions in shear banding fluids in shear banding fluids driven by second normal stress differences

    Full text link
    Edge fracture occurs frequently in non-Newtonian fluids. A similar instability has often been reported at the free surface of fluids undergoing shear banding, and leads to expulsion of the sample. In this paper the distortion of the free surface of such a shear banding fluid is calculated by balancing the surface tension against the second normal stresses induced in the two shear bands, and simultaneously requiring a continuous and smooth meniscus. We show that wormlike micelles typically retain meniscus integrity when shear banding, but in some cases can lose integrity for a range of average applied shear rates during which one expects shear banding. This meniscus fracture would lead to ejection of the sample as the shear banding region is swept through. We further show that entangled polymer solutions are expected to display a propensity for fracture, because of their much larger second normal stresses. These calculations are consistent with available data in the literature. We also estimate the meniscus distortion of a three band configuration, as has been observed in some wormlike micellar solutions in a cone and plate geometry.Comment: 23 pages, to be published in Journal of Rheolog

    Phase Separation in Binary Fluid Mixtures with Continuously Ramped Temperature

    Full text link
    We consider the demixing of a binary fluid mixture, under gravity, which is steadily driven into a two phase region by slowly ramping the temperature. We assume, as a first approximation, that the system remains spatially isothermal, and examine the interplay of two competing nonlinearities. One of these arises because the supersaturation is greatest far from the meniscus, creating inversion of the density which can lead to fluid motion; although isothermal, this is somewhat like the Benard problem (a single-phase fluid heated from below). The other is the intrinsic diffusive instability which results either in nucleation or in spinodal decomposition at large supersaturations. Experimental results on a simple binary mixture show interesting oscillations in heat capacity and optical properties for a wide range of ramp parameters. We argue that these oscillations arise under conditions where both nonlinearities are important

    The activation energy for GaAs/AlGaAs interdiffusion

    Get PDF
    Copyright 1997 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 82, 4842 (1997) and may be found at

    Uniaxial and biaxial soft deformations of nematic elastomers

    Full text link
    We give a geometric interpretation of the soft elastic deformation modes of nematic elastomers, with explicit examples, for both uniaxial and biaxial nematic order. We show the importance of body rotations in this non-classical elasticity and how the invariance under rotations of the reference and target states gives soft elasticity (the Golubovic and Lubensky theorem). The role of rotations makes the Polar Decomposition Theorem vital for decomposing general deformations into body rotations and symmetric strains. The role of the square roots of tensors is discussed in this context and that of finding explicit forms for soft deformations (the approach of Olmsted).Comment: 10 pages, 10 figures, RevTex, AmsTe

    Lattice Boltzmann Simulations of Liquid Crystal Hydrodynamics

    Full text link
    We describe a lattice Boltzmann algorithm to simulate liquid crystal hydrodynamics. The equations of motion are written in terms of a tensor order parameter. This allows both the isotropic and the nematic phases to be considered. Backflow effects and the hydrodynamics of topological defects are naturally included in the simulations, as are viscoelastic properties such as shear-thinning and shear-banding.Comment: 14 pages, 5 figures, Revte
    • …
    corecore