8 research outputs found

    Benthic meiofaunal community response to the cascading effects of herbivory within an algal halo system of the Great Barrier Reef

    Get PDF
    © 2018 Ollivier et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Benthic fauna play a crucial role in organic matter decomposition and nutrient cycling at the sediment-water boundary in aquatic ecosystems. In terrestrial systems, grazing herbivores have been shown to influence below-ground communities through alterations to plant distribution and composition, however whether similar cascading effects occur in aquatic systems is unknown. Here, we assess the relationship between benthic invertebrates and above-ground fish grazing across the ‘grazing halos’ of Heron Island lagoon, Australia. Grazing halos, which occur around patch reefs globally, are caused by removal of seagrass or benthic macroalgae by herbivorous fish that results in distinct bands of unvegetated sediments surrounding patch reefs. We found that benthic algal canopy height significantly increased with distance from patch reef, and that algal canopy height was positively correlated with the abundances of only one invertebrate taxon (Nematoda). Both sediment carbon to nitrogen ratios (C:N) and mean sediment particle size (?m) demonstrated a positive correlation with Nematoda and Arthropoda (predominantly copepod) abundances, respectively. These positive correlations indicate that environmental conditions are a major contributor to benthic invertebrate community distribution, acting on benthic communities in conjunction with the cascading effects of above-ground algal grazing. These results suggest that benthic communities, and the ecosystem functions they perform in this system, may be less responsive to changes in above-ground herbivorous processes than those previously studied in terrestrial systems. Understanding how above-ground organisms, and processes, affect their benthic invertebrate counterparts can shed light on how changes in aquatic communities may affect ecosystem function in previously unknown ways

    Carbon sequestration by Australian tidal marshes

    Get PDF
    Australia's tidal marshes have suffered significant losses but their recently recognised importance in CO2 sequestration is creating opportunities for their protection and restoration. We compiled all available data on soil organic carbon (OC) storage in Australia's tidal marshes (323 cores). OC stocks in the surface 1 m averaged 165.41 (SE 6.96) Mg OC ha-1 (range 14-963 Mg OC ha-1). The mean OC accumulation rate was 0.55 ± 0.02 Mg OC ha-1 yr -1. Geomorphology was the most important predictor of OC stocks, with fluvial sites having twice the stock of OC as seaward sites. Australia's 1.4 million hectares of tidal marshes contain an estimated 212 million tonnes of OC in the surface 1 m, with a potential CO2 -equivalent value of USD7.19billion.Annualsequestrationis0.75TgOCyr−1,withaCO2−equivalentvalueofUSD7.19 billion. Annual sequestration is 0.75 Tg OC yr -1, with a CO2 -equivalent value of USD28.02 million per annum. This study provides the most comprehensive estimates of tidal marsh blue carbon in Australia, and illustrates their importance in climate change mitigation and adaptation, acting as CO2 sinks and buffering the impacts of rising sea level. We outline potential further development of carbon offset schemes to restore the sequestration capacity and other ecosystem services provided by Australia tidal marshes

    Are the effects of adjacent habitat type on seagrass gastropod communities being masked by previous focus on habitat dyads?

    Full text link
    © 2015 CSIRO. Variation in abundance and diversity of organisms along habitat edges has long been a key research focus in both terrestrial and marine ecosystems. Previous investigations into edge effects in seagrass ecosystems have predominantly focussed on the seagrass-sandy substrate boundary. However, little is known about what role other habitats (e.g. rocky algal reefs) may play in faunal assemblage patterns. This study investigated the strength to which habitat type influenced gastropod assemblages within seagrass (Posidonia australis) beds, bordered by both sandy substrate and rocky algal reef. We found that benthic invertebrate community composition significantly changed with distance from rocky algal reef, but not with distance from sandy substrate. Proximity to rocky reef had a stronger effect on community composition than other local drivers examined (seagrass biomass and sand particle size). We hypothesise that gastropod affinity for rocky algal reef may be a result of both species-specific habitat preference, and lower predation pressure along adjacent rocky algal reef habitats. This study provides evidence that heterogeneous habitats within close proximity to seagrass beds may exert previously overlooked effects on the distribution of gastropod assemblages, highlighting the need for the inclusion of adjacent habitat type in experimental design for gastropod assemblage distribution studies

    Rapid assessment of hillslope erosion risk after the 2019–2020 wildfires and storm events in sydney drinking water catchment

    Full text link
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. The Australian Black Summer wildfires between September 2019 and January 2020 burnt many parts of eastern Australia including major forests within the Sydney drinking water catchment (SDWC) area, almost 16.000 km2. There was great concern on post-fire erosion and water quality hazards to Sydney’s drinking water supply, especially after the heavy rainfall events in February 2020. We developed a rapid and innovative approach to estimate post-fire hillslope erosion using weather radar, remote sensing, Google Earth Engine (GEE), Geographical Information Systems (GIS), and the Revised Universal Soil Loss Equation (RUSLE). The event-based rainfall erosivity was estimated from radar-derived rainfall accumulations for all storm events after the wildfires. Satellite data including Sentinel-2, Landsat-8, and Moderate Resolution Imaging Spectroradiometer (MODIS) were used to estimate the fractional vegetation covers and the RUSLE cover-management factor. The study reveals that the average post-fire erosion rate over SDWC in February 2020 was 4.9 Mg ha−1 month−1, about 30 times higher than the pre-fire erosion and 10 times higher than the average erosion rate at the same period because of the intense storm events and rainfall erosivity with a return period over 40 years. The high post-fire erosion risk areas (up to 23.8 Mg ha−1 month−1) were at sub-catchments near Warragamba Dam which forms Lake Burragorang and supplies drinking water to more than four million people in Sydney. These findings assist in the timely assessment of post-fire erosion and water quality risks and help develop cost-effective fire incident management and mitigation actions for such an area with both significant ecological and drinking water assets. The methodology developed from this study is potentially applicable elsewhere for similar studies as the input datasets (satellite and radar data) and computing platforms (GEE, GIS) are available and accessible worldwide
    corecore