21 research outputs found

    Guidelines and considerations for designing field experiments simulating precipitation extremes in forest ecosystems

    Get PDF
    1. Precipitation regimes are changing in response to climate change, yet understanding of how forest ecosystems respond to extreme droughts and pluvials remains incomplete. As future precipitation extremes will likely fall outside the range of historical variability, precipitation manipulation experiments (PMEs) are critical to advancing knowledge about potential ecosystem responses. However, few PMEs have been conducted in forests compared to short‐statured ecosystems, and forest PMEs have unique design requirements and constraints. Moreover, past forest PMEs have lacked coordination, limiting cross‐site comparisons. Here, we review and synthesize approaches, challenges, and opportunities for conducting PMEs in forests, with the goal of guiding design decisions, while maximizing the potential for coordination. 2. We reviewed 63 forest PMEs at 70 sites world‐wide. Workshops, meetings, and communications with experimentalists were used to generate and build consensus around approaches for addressing the key challenges and enhancing coordination. 3. Past forest PMEs employed a variety of study designs related to treatment level, replication, plot and infrastructure characteristics, and measurement approaches. Important considerations for establishing new forest PMEs include: selecting appropriate treatment levels to reach ecological thresholds; balancing cost, logistical complexity, and effectiveness in infrastructure design; and preventing unintended water subsidies. Response variables in forest PMEs were organized into three broad tiers reflecting increasing complexity and resource intensiveness, with the first tier representing a recommended core set of common measurements. 4. Differences in site conditions combined with unique research questions of experimentalists necessitate careful adaptation of guidelines for forest PMEs to balance local objectives with coordination among experiments. We advocate adoption of a common framework for coordinating forest PME design to enhance cross‐site comparability and advance fundamental knowledge about the response and sensitivity of diverse forest ecosystems to precipitation extremes.New Hampshire Agricultural Experiment Station, Grant/Award Number: NH00071-M; Northern States Research Cooperative, Grant/Award Number: 14-DG-11242307- 142; National Science Foundation Long-Term Ecological Research, Grant/Award Number: 1637685; USDA Forest Service; University of New Hampshire; NASA, Grant/Award Number: NNX14AD31G; USDA National Institute of Food and Agriculture McIntire- Stennis Project, Grant/Award Number: NH00071-M; U.S. Department of Energy; Office of Science’s Terrestrial Ecosystem Science program; Pacific Northwest National Labs’ LDRD program; MSCA-IF 2015; EU-Horizon2020 program; NSF’s Research Coordination Network Progra

    Evapotranspiration and water use efficiency in relation to climate and canopy nitrogen in U.S. forests

    No full text
    Understanding relations among forest carbon (C) uptake and water use is critical for predicting forest-climate interactions. Although the basic properties of tree-water relations have long been known, our understanding of broader-scale patterns is limited by several factors including (1) incomplete understanding of drivers of change in coupled C and water fluxes and water use efficiency (WUE), (2) difficulty in reconciling WUE estimates obtained at different scales, and (3) uncertainty in how evapotranspiration (ET) and WUE vary with other important resources such as nitrogen (N). To address these issues, we examined ET, gross primary production (GPP), and WUE at 11 AmeriFlux sites across North America. Our analysis spanned leaf and ecosystem scales and included foliar C-13, O-18, and %N measurements; eddy covariance estimates of GPP and ET; and remotely sensed estimates of canopy %N. We used flux data to derive ecosystem WUE (WUEe) and foliar C-13 to infer intrinsic WUE. We found that GPP, ET, and WUEe scaled with canopy %N, even when environmental variables were considered, and discuss the implications of these relationships for forest-atmosphere-climate interactions. We observed opposing patterns of WUE at leaf and ecosystem scales and examined uncertainties to help explain these opposing patterns. Nevertheless, significant relationship between C isotope-derived c(i)/c(a) and GPP indicates that C-13 can be an effective predictor of forest GPP. Finally, we show that incorporating species functional traitswood anatomy, hydraulic strategy, and foliar %Ninto a conceptual model improved the interpretation of C-13 and O-18 vis-a-vis leaf to canopy water-carbon fluxes

    Disentangling the role of photosynthesis and stomatal conductance on rising forest water-use efficiency

    No full text
    Multiple lines of evidence suggest that plant water-use efficiency (WUE)-the ratio of carbon assimilation to water loss-has increased in recent decades. Although rising atmospheric CO2 has been proposed as the principal cause, the underlying physiological mechanisms are still being debated, and implications for the global water cycle remain uncertain. Here, we addressed this gap using 30-y tree ring records of carbon and oxygen isotope measurements and basal area increment from 12 species in 8 North American mature temperate forests. Our goal was to separate the contributions of enhanced photosynthesis and reduced stomatal conductance to WUE trends and to assess consistency between multiple commonly used methods for estimating WUE. Our results show that tree ring-derived estimates of increases in WUE are consistent with estimates from atmospheric measurements and predictions based on an optimal balancing of carbon gains and water costs, but are lower than those based on ecosystem scale flux observations. Although both physiological mechanisms contributed to rising WUE, enhanced photosynthesis was widespread, while reductions in stomatal conductance were modest and restricted to species that experienced moisture limitations. This finding challenges the hypothesis that rising WUE in forests is primarily the result of widespread, CO2-induced reductions in stomatal conductance
    corecore