17 research outputs found

    Structurally Controlled Dynamics in Azobenzene-Based Supramolecular Self-Assemblies in Solid State

    Get PDF
    Light-responsive supramolecular self-assemblies exhibit interplay between order and dynamics of the self-assembling motifs, through which the thermal isomerization rate of azobenzene chromophores can be tuned by orders of magnitude. By using supramolecular complexes of 4-(4-alkylphenylazo)­phenols hydrogen-bonded to poly­(4-vinylpyridine) as model systems, we demonstrate that the thermal isomerization rate of the hydroxyazobenzene derivatives increases 5700-fold when the material undergoes a transformation from a disordered, low-azobenzene-concentration state to a high-concentration state exhibiting lamellar, smectic-like self-assembly. Drastically smaller thermal isomerization rates are observed in disordered structures. This allows us to attribute the change to a combination of increased number density of the hydroxyazobenzenes inducing plasticization, and cooperativity created by the chromophore–chromophore interactions through self-assembled molecular order and alignment. Our results pinpoint the importance of molecular self-assembly and intermolecular interactions in modifying the dynamics in supramolecular complexes in a controlled manner. We foresee this to be important in light-controlled dynamic materials

    Hierarchical Supramolecular Cross-Linking of Polymers for Biomimetic Fracture Energy Dissipating Sacrificial Bonds and Defect Tolerance under Mechanical Loading

    No full text
    Biological structural materials offer fascinating models how to synergistically increase the solid-state defect tolerance, toughness, and strength using nanocomposite structures by incorporating different levels of supramolecular sacrificial bonds to dissipate fracture energy. Inspired thereof, we show how to turn a commodity acrylate polymer, characteristically showing a brittle solid state fracture, to become defect tolerant manifesting noncatastrophic crack propagation by incorporation of different levels of fracture energy dissipating supramolecular interactions. Therein, poly­(2-hydroxyethyl methacrylate) (pHEMA) is a feasible model polymer showing brittle solid state fracture in spite of a high maximum strain and clear yielding, where the weak hydroxyl group mediated hydrogen bonds do not suffice to dissipate fracture energy. We provide the next level stronger supramolecular interactions toward solid-state networks by postfunctionalizing a minor part of the HEMA repeat units using 2-ureido-4­[1<i>H</i>]-pyrimidinone (UPy), capable of forming four strong parallel hydrogen bonds. Interestingly, such a polymer, denoted here as p­(HEMA-<i>co</i>-UPyMA), shows toughening by suppressed catastrophic crack propagation, even if the strength and stiffness are synergistically increased. At the still higher hierarchical level, colloidal level cross-linking using oxidized carbon nanotubes with hydrogen bonding surface decorations, including UPy, COOH, and OH groups, leads to further increased stiffness and ultimate strength, still leading to suppressed catastrophic crack propagation. The findings suggest to incorporate a hierarchy of supramolecular groups of different interactions strengths upon pursuing toward biomimetic toughening

    Preservation of Superhydrophobic and Superoleophobic Properties upon Wear Damage

    No full text
    Superhydrophobicity and self-cleaning require a combination of surface topography and low-energy surfaces, where mechanical damage of the topography or contamination with oils lead to loss of the nonwetting properties. We show that such vulnerability can be solved by superamphiphobic (i.e., both superhydrophobic and superoleophobic) surfactant-coated aerogel surfaces. Using silica aerogels as model materials, the self-similar network structure allows fresh re-entrant surface topographies even after removal of the uppermost layer upon mechanical abrasion, and superoleophobicity suppresses oil contamination. Given the recent progress toward mechanically strong aerogels, we foresee that the concept can open routes for robust self-cleaning coating technologies

    Preservation of Superhydrophobic and Superoleophobic Properties upon Wear Damage

    No full text
    Superhydrophobicity and self-cleaning require a combination of surface topography and low-energy surfaces, where mechanical damage of the topography or contamination with oils lead to loss of the nonwetting properties. We show that such vulnerability can be solved by superamphiphobic (i.e., both superhydrophobic and superoleophobic) surfactant-coated aerogel surfaces. Using silica aerogels as model materials, the self-similar network structure allows fresh re-entrant surface topographies even after removal of the uppermost layer upon mechanical abrasion, and superoleophobicity suppresses oil contamination. Given the recent progress toward mechanically strong aerogels, we foresee that the concept can open routes for robust self-cleaning coating technologies

    Thermal Isomerization of Hydroxyazobenzenes as a Platform for Vapor Sensing

    Get PDF
    Photoisomerization of azobenzene derivatives is a versatile tool for devising light-responsive materials for a broad range of applications in photonics, robotics, microfabrication, and biomaterials science. Some applications rely on fast isomerization kinetics, while for others, bistable azobenzenes are preferred. However, solid-state materials where the isomerization kinetics depends on the environmental conditions have been largely overlooked. Herein, an approach to utilize the environmental sensitivity of isomerization kinetics is developed. It is demonstrated that thin polymer films containing hydroxyazobenzenes offer a conceptually novel platform for sensing hydrogen-bonding vapors in the environment. The concept is based on accelerating the thermal <i>cis</i>–<i>trans</i> isomerization rate through hydrogen-bond-catalyzed changes in the thermal isomerization pathway, which allows for devising a relative humidity sensor with high sensitivity and quick response to relative humidity changes. The approach is also applicable for detecting other hydrogen-bonding vapors such as methanol and ethanol. Employing isomerization kinetics of azobenzenes for vapor sensing opens new intriguing possibilities for using azobenzene molecules in the future

    Deoxyguanosine Phosphate Mediated Sacrificial Bonds Promote Synergistic Mechanical Properties in Nacre-Mimetic Nanocomposites

    No full text
    We show that functionalizing polymer-coated colloidal nanoplatelets with guanosine groups allows synergistic increase of mechanical properties in nacre-mimetic lamellar self-assemblies. Anionic montmorillonite (MTM) was first coated using cationic poly­(diallyldimethylammonium chloride) (PDADMAC) to prepare core–shell colloidal platelets, and subsequently the remaining chloride counterions allowed exchange to functional anionic 2′-deoxyguanosine 5′-monophosphate (dGMP) counterions, containing hydrogen bonding donors and acceptors. The compositions were studied using elemental analysis, scanning and transmission electron microscopy, wide-angle X-ray scattering, and tensile testing. The lamellar spacing between the clays increases from 1.85 to 2.14 nm upon addition of the dGMP. Adding dGMP increases the elastic modulus, tensile strength, and strain 33.0%, 40.9%, and 5.6%, respectively, to 13.5 GPa, 67 MPa, and 1.24%, at 50% relative humidity. This leads to an improved toughness seen as a ca. 50% increase of the work-to-failure. This is noteworthy, as previously it has been observed that connecting the core–shell nanoclay platelets covalently or ionically leads to increase of the stiffness but to reduced strain. We suggest that the dynamic supramolecular bonds allow slippage and sacrificial bonds between the self-assembling nanoplatelets, thus promoting toughness, still providing dynamic interactions between the platelets

    Controlling Multicompartment Morphologies Using Solvent Conditions and Chemical Modification

    No full text
    The solution self-assembly of amphiphilic diblock copolymers into spheres, cylinders, and vesicles (polymersomes) has been intensely studied over the past two decades, and their morphological behavior is well understood. Linear ABC triblock terpolymers with two insoluble blocks A/B, on the other hand, display a richer and more complex morphological spectrum that has been recently explored by synthetic block length variations. Here, we describe facile postpolymerization routes to tailor ABC triblock terpolymer solution morphologies by altering block solubility (solvent mixtures), blending with homopolymers, and block-selective chemical reactions. The feasibility of these processes is demonstrated on polystyrene-<i>block</i>-polybutadiene-<i>block</i>-poly­(methyl methacrylate) (SBM) that assembles to patchy spherical micelles, which can be modified to evolve into double and triple helices or patchy and striped vesicles. These results demonstrate that postpolymerization treatments give access to a broad range of morphologies from single triblock terpolymers without the need for multiple polymer syntheses

    Bacterial Nanocellulose Aerogel Membranes: Novel High-Porosity Materials for Membrane Distillation

    No full text
    We fabricated, characterized, and tested novel fibrous aerogel membranes in direct contact membrane distillation (MD) to elucidate the effects of a model high-porosity membrane material on MD performance. Unsupported bacterial nanocellulose aerogels exhibit higher porosity, thinner fibers, and lower bulk thermal conductivity than any previously reported MD materials. Modeling and experiments demonstrate that these material properties confer significantly higher intrinsic membrane permeability and thermal efficiency than symmetric PVDF phase inversion membranes with lower porosity. Development of macroporous fibrous membranes with aerogel-like porosity and thermal conductivity (>98% and <0.03 W m<sup>–1</sup> K<sup>–1</sup>, respectively) in thinner-film formats may further improve MD flux

    Thermoresponsive Nanocellulose Hydrogels with Tunable Mechanical Properties

    No full text
    Cellulose microfibrils physically bound together by soft hemicellulose chains form the scaffolding that makes plant cell walls strong. Inspired by this architecture, we designed biomimetic thermoreversible hydrogel networks based on reinforcing cellulose nanocrystals (CNC) and thermoresponsive methylcellulose (MC). Upon dissolving MC powder in CNC aqueous dispersions, viscoelastic dispersions were formed at 20 °C, where the storage modulus (<i>G</i>′) is tunable from 1.0 to 75 Pa upon increasing the CNC concentration from 0 to 3.5 wt % with 1.0 wt % MC. By contrast, at 60 °C a distinct gel state is obtained with <i>G</i>′ ≫ <i>G</i>″, <i>G</i>′ ∼ ω<sup>0</sup>, with an order of magnitude larger <i>G</i>′ values from 110 to 900 Pa upon increasing the CNC concentration from 0 to 3.5 wt % with constant 1.0 wt % MC, due to the physical cross-links between MC and CNCs. Therefore, simply mixing two sustainable components leads to the first all-cellulose thermoreversible and tunable nanocellulose-based hydrogels

    Nacre-Mimetic Clay/Xyloglucan Bionanocomposites: A Chemical Modification Route for Hygromechanical Performance at High Humidity

    No full text
    Nacre-mimetic bionanocomposites of high montmorillonite (MTM) clay content, prepared from hydrocolloidal suspensions, suffer from reduced strength and stiffness at high relative humidity. We address this problem by chemical modification of xyloglucan in (XG)/MTM nacre-mimetic nanocomposites, by subjecting the XG to regioselective periodate oxidation of side chains to enable it to form covalent cross-links to hydroxyl groups in neighboring XG chains or to the MTM surface. The resulting materials are analyzed by FTIR spectroscopy, thermogravimetric analysis, carbohydrate analysis, calorimetry, X-ray diffraction, scanning electron microscopy, tensile tests, and oxygen barrier properties. We compare the resulting mechanical properties at low and high relative humidity. The periodate oxidation leads to a strong increase in modulus and strength of the materials. A modulus of 30 GPa for cross-linked composite at 50% relative humidity compared with 13.7 GPa for neat XG/MTM demonstrates that periodate oxidation of the XG side chains leads to crucially improved stress transfer at the XG/MTM interface, possibly through covalent bond formation. This enhanced interfacial adhesion and internal cross-linking of the matrix moreover preserves the mechanical properties at high humidity condition and leads to a Young’s modulus of 21 GPa at 90%RH
    corecore