540 research outputs found

    Stochastically positive structures on Weyl algebras. The case of quasi-free states

    Full text link
    We consider quasi-free stochastically positive ground and thermal states on Weyl algebras in Euclidean time formulation. In particular, we obtain a new derivation of a general form of thermal quasi-free state and give conditions when such state is stochastically positive i.e. when it defines periodic stochastic process with respect to Euclidean time, so called thermal process. Then we show that thermal process completely determines modular structure canonically associated with quasi-free state on Weyl algebra. We discuss a variety of examples connected with free field theories on globally hyperbolic stationary space-times and models of quantum statistical mechanics.Comment: 46 pages, amste

    Unitarity as preservation of entropy and entanglement in quantum systems

    Full text link
    The logical structure of Quantum Mechanics (QM) and its relation to other fundamental principles of Nature has been for decades a subject of intensive research. In particular, the question whether the dynamical axiom of QM can be derived from other principles has been often considered. In this contribution, we show that unitary evolutions arise as a consequences of demanding preservation of entropy in the evolution of a single pure quantum system, and preservation of entanglement in the evolution of composite quantum systems.Comment: To be submitted to the special issue of Foundations of Physics on the occassion of the seventieth birthday of Emilio Santos. v2: 10 pages, no figures, RevTeX4; Corrected and extended version, containing new results on consequences of entanglement preservatio

    Completely Mixing Quantum Open Systems and Quantum Fractals

    Get PDF
    Departing from classical concepts of ergodic theory, formulated in terms of probability densities, measures describing the chaotic behavior and the loss of information in quantum open systems are proposed. As application we discuss the chaotic outcomes of continuous measurement processes in the EEQT framework. Simultaneous measurement of four noncommuting spin components is shown to lead to a chaotic jump on quantum spin sphere and to generate specific fractal images - nonlinear ifs (iterated function system). The model is purely theoretical at this stage, and experimental confirmation of the chaotic behavior of measuring instruments during simultaneous continuous measurement of several noncommuting quantum observables would constitute a quantitative verification of Event Enhanced Quantum Theory.Comment: Latex format, 20 pages, 6 figures in jpg format. New replacement has two more references (including one to a paper by G. Casati et al on quantum fractal eigenstates), adds example and comments concerning mixing properties of of a two-level atom driven by a laser field, and also adds a number of other remarks which should make it easier to follow mathematical argument

    A Way Out of the Quantum Trap

    Get PDF
    We review Event Enhanced Quantum Theory (EEQT). In Section 1 we address the question "Is Quantum Theory the Last Word". In particular we respond to some of recent challenging staments of H.P. Stapp. We also discuss a possible future of the quantum paradigm - see also Section 5. In Section 2 we give a short sketch of EEQT. Examples are given in Section 3. Section 3.3 discusses a completely new phenomenon - chaos and fractal-like phenomena caused by a simultaneous "measurement" of several non-commuting observables (we include picture of Barnsley's IFS on unit sphere of a Hilbert space). In Section 4 we answer "Frequently Asked Questions" concerning EEQT.Comment: Replacement. Corrected affiliation. Latex, one .jpg figure. To appear in Proc. Conf. Relativistic Quantum Measurements, Napoli 1998, Ed. F. Petruccion

    Measurement of the Luminosity in the ZEUS Experiment at HERA II

    Full text link
    The luminosity in the ZEUS detector was measured using photons from electron bremsstrahlung. In 2001 the HERA collider was upgraded for operation at higher luminosity. At the same time the luminosity-measuring system of the ZEUS experiment was modified to tackle the expected higher photon rate and synchrotron radiation. The existing lead-scintillator calorimeter was equipped with radiation hard scintillator tiles and shielded against synchrotron radiation. In addition, a magnetic spectrometer was installed to measure the luminosity independently using photons converted in the beam-pipe exit window. The redundancy provided a reliable and robust luminosity determination with a systematic uncertainty of 1.7%. The experimental setup, the techniques used for luminosity determination and the estimate of the systematic uncertainty are reported.Comment: 25 pages, 11 figure

    On Uniqueness of the Jump Process in Quantum Measurement Theory

    Full text link
    We prove that, contrary to the standard quantum theory of continuous observation, in the formalism of Event Enhanced Quantum Theory the stochastic process generating individual sample histories of pairs (observed quantum system, observing classical apparatus) is unique. This result gives a rigorous basis to the previous heuristic argument of Blanchard and Jadczyk. Possible implications of this result are discussed.Comment: 31 pages, LaTeX, article; e-mail contact [email protected]

    Gentle Perturbations of the Free Bose Gas I

    Full text link
    It is demonstrated that the thermal structure of the noncritical free Bose Gas is completely described by certain periodic generalized Gaussian stochastic process or equivalently by certain periodic generalized Gaussian random field. Elementary properties of this Gaussian stochastic thermal structure have been established. Gentle perturbations of several types of the free thermal stochastic structure are studied. In particular new models of non-Gaussian thermal structures have been constructed and a new functional integral representation of the corresponding euclidean-time Green functions have been obtained rigorously.Comment: 51 pages, LaTeX fil

    Multijet production in neutral current deep inelastic scattering at HERA and determination of α_{s}

    Get PDF
    Multijet production rates in neutral current deep inelastic scattering have been measured in the range of exchanged boson virtualities 10 5 GeV and –1 < η_{LAB}^{jet} < 2.5. Next-to-leading-order QCD calculations describe the data well. The value of the strong coupling constant α_{s} (M_{z}), determined from the ratio of the trijet to dijet cross sections, is α_{s} (M_{z}) = 0.1179 ± 0.0013 (stat.)_{-0.0046}^{+0.0028}(exp.)_{-0.0046}^{+0.0028}(th.)

    Jet production in charged current deep inelastic e⁺p scatteringat HERA

    Get PDF
    The production rates and substructure of jets have been studied in charged current deep inelastic e⁺p scattering for Q² > 200 GeV² with the ZEUS detector at HERA using an integrated luminosity of 110.5 pb⁻¹. Inclusive jet cross sections are presented for jets with transverse energies E_{T}^{jet} > 5 GeV. Measurements of the mean subjet multiplicity, 〈n_{sbj}〉, of the inclusive jet sample are presented. Predictions based on parton-shower Monte Carlo models and next-to-leading-order QCD calculations are compared to the measurements. The value of α_{s} (M_{z}), determined from 〈n_{sbj}〉 at y_{cut} = 10⁻² for jets with 25 < E_{T}^{jet} < 119 GeV, is α_{s} (M_{z}) = 0.1202 ± 0.0052 (stat.)_{-0.0019}^{+0.0060} (syst.)_{-0.0053}^{+0.0065} (th.). The mean subjet multiplicity as a function of Q² is found to be consistent with that measured in NC DIS
    corecore