14 research outputs found
Applications and Advantages of Atomic Layer Deposition for Lithium-Ion Batteries Cathodes: Review
Nowadays, lithium-ion batteries (LIBs) are one of the most convenient, reliable, and promising power sources for portable electronics, power tools, hybrid and electric vehicles. The characteristics of the positive electrode (cathode active material, CAM) significantly contribute to the battery’s functional properties. Applying various functional coatings is one of the productive ways to improve the work characteristics of lithium-ion batteries. Nowadays, there are many methods for depositing thin films on a material’s surface; among them, one of the most promising is atomic layer deposition (ALD). ALD allows for the formation of thin and uniform coatings on surfaces with complex geometric forms, including porous structures. This review is devoted to applying the ALD method in obtaining thin functional coatings for cathode materials and includes an overview of more than 100 publications. The most thoroughly investigated surface modifications are lithium cobalt oxide (LCO), lithium manganese spinel (LMO), lithium nickel-cobalt-manganese oxides (NCM), lithium-nickel-manganese spinel (LNMO), and lithium-manganese rich (LMR) cathode materials. The most studied processes of deposition are aluminum oxide (Al2O3), titanium dioxide (TiO2) and zirconium dioxide (ZrO2) films. The primary purposes of such studies are to find the synthesis parameters of films, to find the optimal coating thickness (e.g., ~1–2 nm for Al2O3, ~1 nm for ZrO2, 2, etc.), and to reveal the effect of the coating on the electrochemical parameters of batteries. The review summarizes synthesis conditions, investigation results of deposited films on CAMs and positive electrodes and some functional effects observed due to films obtained by ALD on cathodes
Applications and Advantages of Atomic Layer Deposition for Lithium-Ion Batteries Cathodes: Review
Nowadays, lithium-ion batteries (LIBs) are one of the most convenient, reliable, and promising power sources for portable electronics, power tools, hybrid and electric vehicles. The characteristics of the positive electrode (cathode active material, CAM) significantly contribute to the battery’s functional properties. Applying various functional coatings is one of the productive ways to improve the work characteristics of lithium-ion batteries. Nowadays, there are many methods for depositing thin films on a material’s surface; among them, one of the most promising is atomic layer deposition (ALD). ALD allows for the formation of thin and uniform coatings on surfaces with complex geometric forms, including porous structures. This review is devoted to applying the ALD method in obtaining thin functional coatings for cathode materials and includes an overview of more than 100 publications. The most thoroughly investigated surface modifications are lithium cobalt oxide (LCO), lithium manganese spinel (LMO), lithium nickel-cobalt-manganese oxides (NCM), lithium-nickel-manganese spinel (LNMO), and lithium-manganese rich (LMR) cathode materials. The most studied processes of deposition are aluminum oxide (Al2O3), titanium dioxide (TiO2) and zirconium dioxide (ZrO2) films. The primary purposes of such studies are to find the synthesis parameters of films, to find the optimal coating thickness (e.g., ~1–2 nm for Al2O3, ~1 nm for ZrO2, <1 nm for TiO2, etc.), and to reveal the effect of the coating on the electrochemical parameters of batteries. The review summarizes synthesis conditions, investigation results of deposited films on CAMs and positive electrodes and some functional effects observed due to films obtained by ALD on cathodes
Solar-driven desalination using nanoparticles
Due to the high light absorption and the possibility of localizing boiling to the interior of the receiver, nanoparticles are promising for solar-driven desalination. The paper presents an experimental study of the nanoparticle-based photothermal boiling of water with sea salt. The experiments were carried out using a laboratory-scale system with a transparent photothermal receiver of light and a closed condensate cycle. In this study, we tested three types of nanoparticles: multiwall carbon nanotubes with two main sizes of 49 nm and 72 nm, 110 nm iron oxide particles Fe3O4, and a commercial paste based on carbon nanotubes. The concentration of nanoparticles was varied up to 10% wt. We found that the nanoparticles enhance the steam generation by 23%, relative to a conventional desalinator with a black-body receiver. The best result was obtained for the 5% wt. concentration of carbon nanotubes
ABC-HuMi: the Atlas of Biosynthetic Gene Clusters in the Human Microbiome
The human microbiome has emerged as a rich source of diverse and bioactive natural products, harboring immense potential for therapeutic
applications. To facilitate systematic exploration and analysis of its biosynthetic landscape, we present ABC-HuMi: the Atlas of Biosynthetic
Gene Clusters (BGCs) in the Human Microbiome. ABC-HuMi integrates data from major human microbiome sequence databases and provides
an expansive repository of BGCs compared to the limited coverage offered by existing resources. Employing state-of-the-art BGC prediction
and analysis tools, our database ensures accurate annotation and enhanced prediction capabilities. ABC-HuMi empowers researchers with
advanced browsing, filtering, and search functionality, enabling efficient exploration of the resource. At present, ABC-HuMi boasts a catalog of
19 218 representative BGCs derived from the human gut, oral, skin, respiratory and urogenital systems. By capturing the intricate biosynthetic
potential across diverse human body sites, our database fosters profound insights into the molecular repertoire encoded within the human
microbiome and offers a comprehensive resource for the discovery and characterization of novel bioactive compounds. The database is freely
accessible at https://www.ccb.uni-saarland.de/abc_humi/