28 research outputs found
Magnetic Resonance Imaging in acute ischemic stroke: validation with Positron Emission Tomography
In der vorliegenden kumulativen Habilitationsschrift werden vergleichende
Messungen zwischen Schlaganfall MRT und quantitativem 15O-Wasser-PET erstmals
an einem groĂen Patientenkollektiv im akuten humanen ischĂ€mischen Schlaganfall
prĂ€sentiert. Insbesondere die Detektion des âtissue at riskâ basierend auf dem
Mismatchkonzept wurde mit 15O-Wasser-PET, dem âGoldstandardâ der in-vivio
Perfusionsmessung, verglichen. Das âMismatchâ der Schlaganfall MRT lĂ€sst sich
vereinfacht als volumetrische Differenz (Mismatch) zwischen dem Infarktkern
(DWI) und der Perfusionsminderung (PWI) darstellen. Insbesondere die valide
Detektion der PWI Grenzwerte zwischen Penumbra und OligÀmie
(Penumbragrenzwert) ist fĂŒr die Bestimmung des Mismatches und damit
letztendlich der Penumbra von entscheidender Bedeutung. Dieser Grenzwert
konnte in meinen Arbeiten fĂŒr alle gĂ€ngigen PW Parameter bestimmt und
validiert werden. Der Vergleich zwischen der PWI-CBF und der
Referenzbildgebung PET-CBF konnte eine gute volumetrische Ăbereinstimmung der
hypoperfundierten Regionen fĂŒr den Penumbragrenzwert <20 ml/100g/min
nachweisen. Die vergleichende ROC Kurvenanalyse aller gÀngigen PWI ModalitÀten
mit PET als Referenz zeigt dass die ModalitÀten CBF, Tmax und die AIF
unabhĂ€ngige TTP den Penumbragrenzwert am besten darstellen (AUC ĂŒber 0.9). Die
optimalen PWI Penumbragrenzwerte sind CBF <21.7 ml/100g/min, CBV <1.5 ml/100g,
MTT >5.3 Sekunden, Tmax >5.5 Sekunden und relative TTP >4.2 Sekunden. FĂŒr
diese Grenzwerte weisen der CBF, die Tmax und die TTP die höchste SensitivitÀt
und SpezifitĂ€t (ĂŒber 80%) auf. Weiterhin konnte gezeigt werden, dass die
arterielle Inputfunktion (AIF) fĂŒr die Quantifizierung der PWI ModalitĂ€ten von
zentraler Bedeutung ist. Die AIF sollte fĂŒr quantitative Grenzwerte
idealerweise in einem proximalen GefÀà kontralateral zum Infarkt gewÀhlt
werden (cACI bzw. cM1). Relative Penumbragrenzwerte hingegen sind
weitestgehend AIF unabhĂ€ngig und damit eine alternative fĂŒr die Klinik, wenn
die genaue Platzierung einer AIF zu zeitaufwendig sein sollte. Die
Penumbragrenzwerte weisen jedoch eine signifikante interindividuelle Varianz
auf, sodass ein gemeinsamer mittlerer Grenzwert die Bestimmung der Penumbra,
basierend auf dem Mismatchkonzept, teilweise ĂŒber- oder unterschĂ€tzen wĂŒrde.
Daher wurde eine individuelle Kalibrierung der Grenzwerte mittels PET
vorgenommen und eine âlook-upâ Tabelle erstellt. Dies ermöglicht es dem
Kliniker im akuten Schlaganfall schnell und zuverlÀssig den individuellen
besten Penumbragrenzwert zu wÀhlen und dadurch die Penumbra zuverlÀssiger zu
bestimmen. Mehrere klinische Studien haben den Behandlungseffekt
rekanalisierender MaĂnahmen (z.B. Thrombolyse) im akuten ischĂ€mischen
Schlaganfall untersucht. Die Studien DEFUSE und EPITHET basieren auf dem
Mismatchkonzept und verwenden die PWI ModalitÀt Tmax mit einem
Penumbragrenzwert >2 Sekunden. Wir konnten hingegen zeigen dass ein
Penumbragrenzwert fĂŒr Tmax >5.5 Sekunden gewĂ€hlt werden sollte, da dieser das
âtissue at riskâ am besten darstellt. Die beiden klinischen
Schlaganfallfolgestudien DEFUSE-2 und ECASS IV - EXTEND haben dementsprechend
den Penumbragrenzwert fĂŒr Tmax auf >6 Sekunden angepasst. Interessanterweise
ergibt ein Vergleich der AIF abhÀngigen Tmax mit der AIF unabhÀngigen TTP
keinen signifikanten Unterschied bezĂŒglich der Bestimmung des âtissue at
riskâ. Die vorliegenden Arbeiten dienen der Optimierung der Detektion des
âtissue at riskâ mit der Schlaganfall MRT und damit der genaueren Bestimmung
der Penumbra im akuten Schlaganfall. Die Ergebnisse sind fĂŒr die erfolgreiche
Selektion von Patienten zur Thrombolyse und interventionellen
Reperfusionstherapie im verlÀngerten Zeitfenster (>4.5 Stunden) von
entscheidender Bedeutung.The concept of mismatch using diffusion-weighted (DW) and perfusion-weighted
(PW) MRI has importantly influenced acute stroke management and the imaging-
based patient selection for reperfusion therapy has become the focus of
todayâs stroke research. The hypoperfused but still viable tissue is the
target for early reperfusion in acute stroke. The so-called âpenumbraâ is
characterized by specific metabolic patterns and can be detected by positron
emission tomography (15O-Water-PET) the gold standard for perfusion
measurements in vivo. Recent MRI data have simplified this concept by the
introduction of the âmismatchâ in which the volumetric difference between
hypoperfusion (PWI) and tissue damage (DWI) defines the tissue at risk. A
comparison of PWI-CBF with the reference PET-CBF (<20 ml/100g/min) could
demonstrate a good volumetric agreement of the penumbra in acute stroke. A
comparative ROC curve analysis of all common PWI modalities with the gold
standard PET could show that CBF, Tmax and the AIF independent TTP could
detect the penumbra threshold best (AUC >0.9). The optimal penumbra thresholds
are CBF 5.3 seconds, Tmax >5.5
seconds and relative TTP >4.2 seconds. For these thresholds CBF, Tmax and TTP
present with the highest sensitivity and specificity (>80 %). Using
quantitative PET we could show that quantification of PWI depends strongly on
the choice of the arterial input function (AIF). The AIF placement
significantly altered absolute penumbra flow thresholds and showed best
agreement with PET for a proximal vessel contralateral to the infarct (cICA or
cM1 segment). The performance of relative penumbra flow thresholds, however,
was not AIF location-dependent and might be along with AIF-independent TTP
maps, more suitable than absolute penumbra flow thresholds in acute stroke if
detailed postprocessing is not feasible. PW maps show an important individual
variation of the penumbra flow threshold values despite the use of
deconvolution algorithms and despite the implementation of input functions.
This finding suggests that using an averaged threshold the penumbra might be
over- or underestimated and the need for an additional individual correction
procedure is required. We could show that this individual variation of
penumbra flow values can be significantly improved by a simple MR-based
calibration. Easily applicable look-up tables identify the individual best
threshold for each PW map to optimize mismatch detection. The benefit of
reperfusion (e.g. thrombolysis) in mismatch tissue has been addressed in
recent clinical trials. Importantly, the definition of mismatch in stroke
trials, as in the DEFUSE and EPITHET, as well as in the current DEFUSE-2 and
ECASS IV - EXTEND trials, is based on a penumbra flow threshold defined by
maps of time to maximum (Tmax). We could show that a penumbra flow threshold
for Tmax of >5.5 seconds should be used for mismatch definition. This penumbra
threshold is an important finding because in recent clinical trials, including
DEFUSE and EPITHET, a Tmax threshold >2 seconds was used to define critically
hypoperfused tissue 3 to 6 hours after symptom onset. Regarding our data and
previous studies, this threshold includes benign oligemia and seems not
suitable. The optimal Tmax threshold seems at least >5 to 6 seconds to define
the tissue at risk. This threshold should be implemented in future clinical
stroke trials and already has been chosen in the ongoing clinical trials
DEFUSE-2 and ECASS IV - EXTED (>6 seconds). Importantly, our data also support
the use of âsimpleâ TTP maps if postprocessing is not feasible or too time-
consuming. The presented work comparing stroke MRI with PET optimises the
detection of penumbra tissue in acute ischemic stroke. These results are
important for effectively selecting patients for i.v. thrombolysis and
interventional recanalisation procedures in the time window beyond 4.5 hours
Influence of the arterial input function on absolute and relative perfusion-weighted imaging penumbral flow detection: A validation with 15o-water positron emission tomography
© 2011 American Heart Association, Inc
MRI-based mismatch detection in acute ischemic stroke: Optimal PWI maps and thresholds validated with PET
Perfusion-weighted (PW) magnetic resonance imaging (MRI) is used to detect penumbral tissue in acute stroke, but the selection of optimal PW-maps and thresholds for tissue at risk detection remains a matter of debate. We validated the performance of PW-maps with 15O-water-positron emission tomography (PET) in a large comparative PET-MR cohort of acute stroke patients. In acute and subacute stroke patients with back-to-back MRI and PET imaging, PW-maps were validated with 15O-water-PET. We pooled two different cerebral blood flow (CBF) PET-maps to define the critical flow (CF) threshold, (i) quantitative (q) CBF-PET with the CF threshold 6.1 s (AUC = 0.94) and non-deconvolved PW-time-to-peak (TTP) >4.8 s (AUC = 0.93) showed the best performance to detect the CF threshold as defined by PET. PW-Tmax with a threshold >6.1 s and TTP with a threshold >4.8 s are the most predictive in detecting the CF threshold for MR-based mismatch definition
Crossed cerebellar diaschisis after stroke: can perfusion-weighted MRI show functional inactivation?
In this study, we aimed to assess the detection of crossed cerebellar diaschisis (CCD) following stroke by perfusion-weighted magnetic resonance imaging (PW-MRI) in comparison with positron emission tomography (PET). Both PW-MRI and 15O-water-PET were performed in acute and subacute hemispheric stroke patients. The degree of CCD was defined by regions of interest placed in the cerebellar hemispheres ipsilateral (I) and contralateral (C) to the supratentorial lesion. An asymmetry index (AI=C/I) was calculated for PET-cerebral blood flow (CBF) and MRI-based maps of CBF, cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP). The resulting AI values were compared by BlandâAltman (BA) plots and receiver operating characteristic analysis to detect the degree and presence of CCD. A total of 26 imaging procedures were performed (median age 57 years, 20/26 imaged within 48âhours after stroke). In BA plots, all four PW-MRI maps could not reliably reflect the degree of CCD. In receiver operating characteristic analysis for detection of CCD, PW-CBF performed poorly (accuracy 0.61), whereas CBV, MTT, and TTP failed (accuracy <0.60). On the basis of our findings, PW-MRI at 1.5âT is not suited to depict CCD after stroke