28 research outputs found

    Magnetic Resonance Imaging in acute ischemic stroke: validation with Positron Emission Tomography

    No full text
    In der vorliegenden kumulativen Habilitationsschrift werden vergleichende Messungen zwischen Schlaganfall MRT und quantitativem 15O-Wasser-PET erstmals an einem großen Patientenkollektiv im akuten humanen ischĂ€mischen Schlaganfall prĂ€sentiert. Insbesondere die Detektion des „tissue at risk“ basierend auf dem Mismatchkonzept wurde mit 15O-Wasser-PET, dem „Goldstandard“ der in-vivio Perfusionsmessung, verglichen. Das „Mismatch“ der Schlaganfall MRT lĂ€sst sich vereinfacht als volumetrische Differenz (Mismatch) zwischen dem Infarktkern (DWI) und der Perfusionsminderung (PWI) darstellen. Insbesondere die valide Detektion der PWI Grenzwerte zwischen Penumbra und OligĂ€mie (Penumbragrenzwert) ist fĂŒr die Bestimmung des Mismatches und damit letztendlich der Penumbra von entscheidender Bedeutung. Dieser Grenzwert konnte in meinen Arbeiten fĂŒr alle gĂ€ngigen PW Parameter bestimmt und validiert werden. Der Vergleich zwischen der PWI-CBF und der Referenzbildgebung PET-CBF konnte eine gute volumetrische Übereinstimmung der hypoperfundierten Regionen fĂŒr den Penumbragrenzwert <20 ml/100g/min nachweisen. Die vergleichende ROC Kurvenanalyse aller gĂ€ngigen PWI ModalitĂ€ten mit PET als Referenz zeigt dass die ModalitĂ€ten CBF, Tmax und die AIF unabhĂ€ngige TTP den Penumbragrenzwert am besten darstellen (AUC ĂŒber 0.9). Die optimalen PWI Penumbragrenzwerte sind CBF <21.7 ml/100g/min, CBV <1.5 ml/100g, MTT >5.3 Sekunden, Tmax >5.5 Sekunden und relative TTP >4.2 Sekunden. FĂŒr diese Grenzwerte weisen der CBF, die Tmax und die TTP die höchste SensitivitĂ€t und SpezifitĂ€t (ĂŒber 80%) auf. Weiterhin konnte gezeigt werden, dass die arterielle Inputfunktion (AIF) fĂŒr die Quantifizierung der PWI ModalitĂ€ten von zentraler Bedeutung ist. Die AIF sollte fĂŒr quantitative Grenzwerte idealerweise in einem proximalen GefĂ€ĂŸ kontralateral zum Infarkt gewĂ€hlt werden (cACI bzw. cM1). Relative Penumbragrenzwerte hingegen sind weitestgehend AIF unabhĂ€ngig und damit eine alternative fĂŒr die Klinik, wenn die genaue Platzierung einer AIF zu zeitaufwendig sein sollte. Die Penumbragrenzwerte weisen jedoch eine signifikante interindividuelle Varianz auf, sodass ein gemeinsamer mittlerer Grenzwert die Bestimmung der Penumbra, basierend auf dem Mismatchkonzept, teilweise ĂŒber- oder unterschĂ€tzen wĂŒrde. Daher wurde eine individuelle Kalibrierung der Grenzwerte mittels PET vorgenommen und eine „look-up“ Tabelle erstellt. Dies ermöglicht es dem Kliniker im akuten Schlaganfall schnell und zuverlĂ€ssig den individuellen besten Penumbragrenzwert zu wĂ€hlen und dadurch die Penumbra zuverlĂ€ssiger zu bestimmen. Mehrere klinische Studien haben den Behandlungseffekt rekanalisierender Maßnahmen (z.B. Thrombolyse) im akuten ischĂ€mischen Schlaganfall untersucht. Die Studien DEFUSE und EPITHET basieren auf dem Mismatchkonzept und verwenden die PWI ModalitĂ€t Tmax mit einem Penumbragrenzwert >2 Sekunden. Wir konnten hingegen zeigen dass ein Penumbragrenzwert fĂŒr Tmax >5.5 Sekunden gewĂ€hlt werden sollte, da dieser das „tissue at risk“ am besten darstellt. Die beiden klinischen Schlaganfallfolgestudien DEFUSE-2 und ECASS IV - EXTEND haben dementsprechend den Penumbragrenzwert fĂŒr Tmax auf >6 Sekunden angepasst. Interessanterweise ergibt ein Vergleich der AIF abhĂ€ngigen Tmax mit der AIF unabhĂ€ngigen TTP keinen signifikanten Unterschied bezĂŒglich der Bestimmung des „tissue at risk“. Die vorliegenden Arbeiten dienen der Optimierung der Detektion des „tissue at risk“ mit der Schlaganfall MRT und damit der genaueren Bestimmung der Penumbra im akuten Schlaganfall. Die Ergebnisse sind fĂŒr die erfolgreiche Selektion von Patienten zur Thrombolyse und interventionellen Reperfusionstherapie im verlĂ€ngerten Zeitfenster (>4.5 Stunden) von entscheidender Bedeutung.The concept of mismatch using diffusion-weighted (DW) and perfusion-weighted (PW) MRI has importantly influenced acute stroke management and the imaging- based patient selection for reperfusion therapy has become the focus of today’s stroke research. The hypoperfused but still viable tissue is the target for early reperfusion in acute stroke. The so-called “penumbra” is characterized by specific metabolic patterns and can be detected by positron emission tomography (15O-Water-PET) the gold standard for perfusion measurements in vivo. Recent MRI data have simplified this concept by the introduction of the “mismatch” in which the volumetric difference between hypoperfusion (PWI) and tissue damage (DWI) defines the tissue at risk. A comparison of PWI-CBF with the reference PET-CBF (<20 ml/100g/min) could demonstrate a good volumetric agreement of the penumbra in acute stroke. A comparative ROC curve analysis of all common PWI modalities with the gold standard PET could show that CBF, Tmax and the AIF independent TTP could detect the penumbra threshold best (AUC >0.9). The optimal penumbra thresholds are CBF 5.3 seconds, Tmax >5.5 seconds and relative TTP >4.2 seconds. For these thresholds CBF, Tmax and TTP present with the highest sensitivity and specificity (>80 %). Using quantitative PET we could show that quantification of PWI depends strongly on the choice of the arterial input function (AIF). The AIF placement significantly altered absolute penumbra flow thresholds and showed best agreement with PET for a proximal vessel contralateral to the infarct (cICA or cM1 segment). The performance of relative penumbra flow thresholds, however, was not AIF location-dependent and might be along with AIF-independent TTP maps, more suitable than absolute penumbra flow thresholds in acute stroke if detailed postprocessing is not feasible. PW maps show an important individual variation of the penumbra flow threshold values despite the use of deconvolution algorithms and despite the implementation of input functions. This finding suggests that using an averaged threshold the penumbra might be over- or underestimated and the need for an additional individual correction procedure is required. We could show that this individual variation of penumbra flow values can be significantly improved by a simple MR-based calibration. Easily applicable look-up tables identify the individual best threshold for each PW map to optimize mismatch detection. The benefit of reperfusion (e.g. thrombolysis) in mismatch tissue has been addressed in recent clinical trials. Importantly, the definition of mismatch in stroke trials, as in the DEFUSE and EPITHET, as well as in the current DEFUSE-2 and ECASS IV - EXTEND trials, is based on a penumbra flow threshold defined by maps of time to maximum (Tmax). We could show that a penumbra flow threshold for Tmax of >5.5 seconds should be used for mismatch definition. This penumbra threshold is an important finding because in recent clinical trials, including DEFUSE and EPITHET, a Tmax threshold >2 seconds was used to define critically hypoperfused tissue 3 to 6 hours after symptom onset. Regarding our data and previous studies, this threshold includes benign oligemia and seems not suitable. The optimal Tmax threshold seems at least >5 to 6 seconds to define the tissue at risk. This threshold should be implemented in future clinical stroke trials and already has been chosen in the ongoing clinical trials DEFUSE-2 and ECASS IV - EXTED (>6 seconds). Importantly, our data also support the use of “simple” TTP maps if postprocessing is not feasible or too time- consuming. The presented work comparing stroke MRI with PET optimises the detection of penumbra tissue in acute ischemic stroke. These results are important for effectively selecting patients for i.v. thrombolysis and interventional recanalisation procedures in the time window beyond 4.5 hours

    MRI-based mismatch detection in acute ischemic stroke: Optimal PWI maps and thresholds validated with PET

    No full text
    Perfusion-weighted (PW) magnetic resonance imaging (MRI) is used to detect penumbral tissue in acute stroke, but the selection of optimal PW-maps and thresholds for tissue at risk detection remains a matter of debate. We validated the performance of PW-maps with 15O-water-positron emission tomography (PET) in a large comparative PET-MR cohort of acute stroke patients. In acute and subacute stroke patients with back-to-back MRI and PET imaging, PW-maps were validated with 15O-water-PET. We pooled two different cerebral blood flow (CBF) PET-maps to define the critical flow (CF) threshold, (i) quantitative (q) CBF-PET with the CF threshold 6.1 s (AUC = 0.94) and non-deconvolved PW-time-to-peak (TTP) >4.8 s (AUC = 0.93) showed the best performance to detect the CF threshold as defined by PET. PW-Tmax with a threshold >6.1 s and TTP with a threshold >4.8 s are the most predictive in detecting the CF threshold for MR-based mismatch definition

    Crossed cerebellar diaschisis after stroke: can perfusion-weighted MRI show functional inactivation?

    No full text
    In this study, we aimed to assess the detection of crossed cerebellar diaschisis (CCD) following stroke by perfusion-weighted magnetic resonance imaging (PW-MRI) in comparison with positron emission tomography (PET). Both PW-MRI and 15O-water-PET were performed in acute and subacute hemispheric stroke patients. The degree of CCD was defined by regions of interest placed in the cerebellar hemispheres ipsilateral (I) and contralateral (C) to the supratentorial lesion. An asymmetry index (AI=C/I) was calculated for PET-cerebral blood flow (CBF) and MRI-based maps of CBF, cerebral blood volume (CBV), mean transit time (MTT), and time to peak (TTP). The resulting AI values were compared by Bland–Altman (BA) plots and receiver operating characteristic analysis to detect the degree and presence of CCD. A total of 26 imaging procedures were performed (median age 57 years, 20/26 imaged within 48 hours after stroke). In BA plots, all four PW-MRI maps could not reliably reflect the degree of CCD. In receiver operating characteristic analysis for detection of CCD, PW-CBF performed poorly (accuracy 0.61), whereas CBV, MTT, and TTP failed (accuracy <0.60). On the basis of our findings, PW-MRI at 1.5 T is not suited to depict CCD after stroke
    corecore