414 research outputs found

    FESEM evaluation of smear layer removal from conservatively shaped canals: laser activated irrigation (PIPS and SWEEPS) compared to sonic and passive ultrasonic activation—an ex vivo study

    Get PDF
    Background: Irrigation of the pulp space is a mandatory step to get rid of all its organic and inorganic content. Activation of the irrigants play a key role in the era of minimally invasive endodontics. The aim of this study was to assess the effectiveness of different irrigants activation methods in removing the smear layer at 1, 3, 5 and 8 mm from the apex from conservatively shaped canals. Methods: Eighty-five human mandibular premolars were selected. Specimens were shaped to TruShape 25/.06 and divided into 5 groups (1 control and 4 test groups) according to the final activation technique (EndoActivator, EA), Ultrasonic (EndoUltra, PUI) and Laser (PIPS and SWEEPS). EDTA (Ethylenediaminetetraacetic acid) followed by NaOCl (Sodium Hypochlorite) and again EDTA were activated for each test group. Specimens were then split longitudinally and observed by Field Emission Scanning Electron Microscopy (FESEM). Blinded evaluation of the presence of smear layer was performed at 1000X magnification, according to a 5-score index system. Comparison between groups were analysed statistically using the Kruskal–Wallis non-parametric analysis of variance. Bonferroni multiple comparison tests were used. Results: At 1 mm only PIPS and SWEEPS performed better than the control group. At 3, 5 and 8 mm from the apex, every activation technique showed statistically significant reduction of smear layer when compared to the control group. PIPS and SWEEPS obtained better cleanliness result compared to EA, while only PIPS was superior to PUI in terms of cleanliness. Conclusions: PIPS and SWEEPS showed the best results in conservative canal preparations. Nowadays, contemporary rotary instruments allow fast and minimally invasive shaping of the endodontic space. In this scenario irrigants’ activation may be regarded as a mandatory step to a favourable clinical outcome

    Toxicity in aquatic environments: discussion and evaluation methods

    Get PDF
    Aquatic toxicity tests are assays performed with different aquatic organisms of different ecological organization levels. Such tests are a source of information on the toxicity of a given substance or wastewater under controlled conditions, and they complement the physico-chemical analyses. Moreover, they allow one to evaluate the risks resulting from the presence of toxic substances in the environment. Algae, crustaceans, fishes and bacteria are frequently used in toxicity tests. In this work, we will present the main aspects related to the aquatic toxicity tests and a discussion of their applicability will also be presented.FAPES

    Size effects on the Neél temperature of antiferromagnetic NiO nanoparticles

    Get PDF
    Among all antiferromagnetic transition metal monoxides, NiO presents the highest Neél temperature (TN ~ 525 K). In this work, the size-dependent reduction of TN in NiO nanoparticles with average diameters (D) ranging from 4 to 9 nm is investigated by neutron diffraction. The scaling law followed by TN(D) is in agreement with the Binder theory of critical phenomena in low-dimensional systems. X-ray absorption fine structure measurements link the decrease of TN to the occurrence of size effects (average undercoordination, bond relaxation and static disorder) in the nearest and next-nearest Ni coordination shells that hold the key for the maintenance of the antiferromagnetic order

    Silica-magnesium-titanium Ziegler-Natta catalysts. Part 1: Structure of the pre-catalyst at a molecular level

    Get PDF
    In this paper, which is the first part of a more extended work, we elucidate the molecular level structure of a highly active SiO2-supported Ziegler-Natta precatalyst obtained by reacting a dehydroxylated silica and a solution of an organomagnesium compound with TiCl4. The synergetic combination of Ti K-edge and Ti L3-edge X-ray Absorption spectroscopy (XAS) and diffuse reflectance UV–Vis spectroscopies, complemented by Density Functional Theory (DFT) simulations, indicate that small TiCl3 clusters similar to β-TiCl3 coexist with isolated monomeric Ti(IV) species. Ti K-edge Extended X-ray Absorption Fine Structure (EXAFS) Spectroscopy allows the quantification of these two phases and demonstrates that the Ti(IV) sites are 6-fold coordinated (either by six chlorine ligands or by five chlorine and one oxygen ligands), but highly distorted, similar to what is modelled for TiCl4-capped MgCl2 nanoplatelets. Finally, IR spectroscopy suggests that the MgCl2 phase has a molecular character (Far-IR) and that the only accessible Mg2+ sites are uncoordinated cations acting as Lewis acid sites (IR of CO adsorbed at 100 K). Based on these experimental findings, we propose the co-existence in the precatalyst of small TiCl3 clusters and of mixed oxo-chloride magnesium-titanium structures deposited at the silica surface. The evolution of the precatalyst in the presence of the activator and of the monomer is discussed in the second part of this work

    Observing Brownian motion in vibration-fluidized granular matter

    Full text link
    At the beginning of last century, Gerlach and Lehrer observed the rotational Brownian motion of a very fine wire immersed in an equilibrium environment, a gas. This simple experiment eventually permitted the full development of one of the most important ideas of equilibrium statistical mechanics: the very complicated many-particle problem of a large number of molecules colliding with the wire, can be represented by two macroscopic parameters only, namely viscosity and the temperature. Can this idea, mathematically developed in the so-called Langevin model and the fluctuation-dissipation theorem be used to describe systems that are far from equilibrium? Here we address the question and reproduce the Gerlach and Lehrer experiment in an archetype non-equilibrium system, by immersing a sensitive torsion oscillator in a granular system of millimetre-size grains, fluidized by strong external vibrations. The vibro-fluidized granular medium is a driven environment, with continuous injection and dissipation of energy, and the immersed oscillator can be seen as analogous to an elastically bound Brownian particle. We show, by measuring the noise and the susceptibility, that the experiment can be treated, in first approximation, with the same formalism as in the equilibrium case, giving experimental access to a ''granular viscosity'' and an ''effective temperature'', however anisotropic and inhomogeneous, and yielding the surprising result that the vibro-fluidized granular matter behaves as a ''thermal'' bath satisfying a fluctuation-dissipation relation

    Defect Engineering of Ta3N5 Photoanodes: Enhancing Charge Transport and Photoconversion Efficiencies via Ti Doping

    Get PDF
    While Ta3N5 shows excellent potential as a semiconductor photoanode for solar water splitting, its performance is hindered by poor charge carrier transport and trapping due to native defects that introduce electronic states deep within its bandgap. Here, it is demonstrated that controlled Ti doping of Ta3N5 can dramatically reduce the concentration of deep-level defects and enhance its photoelectrochemical performance, yielding a sevenfold increase in photocurrent density and a 300 mV cathodic shift in photocurrent onset potential compared to undoped material. Comprehensive characterization reveals that Ti4+ ions substitute Ta5+ lattice sites, thereby introducing compensating acceptor states, reducing the concentrations of deleterious nitrogen vacancies and reducing Ta3+ states, and thereby suppressing trapping and recombination. Owing to the similar ionic radii of Ti4+ and Ta5+, substitutional doping does not introduce lattice strain or significantly affect the underlying electronic structure of the host semiconductor. Furthermore, Ti can be incorporated without increasing the oxygen donor content, thereby enabling the electrical conductivity to be tuned by over seven orders of magnitude. Thus, Ti doping of Ta3N5 provides a powerful basis for precisely engineering its optoelectronic characteristics and to substantially improve its functional characteristics as an advanced photoelectrode for solar fuels applications
    • …
    corecore