134 research outputs found

    Objective, comparative assessment of the penetration depth of temporal-focusing microscopy for imaging various organs

    Get PDF
    Temporal focusing is a technique for performing axially resolved widefield multiphoton microscopy with a large field of view. Despite significant advantages over conventional point-scanning multiphoton microscopy in terms of imaging speed, the need to collect the whole image simultaneously means that it is expected to achieve a lower penetration depth in common biological samples compared to point-scanning. We assess the penetration depth using a rigorous objective criterion based on the modulation transfer function, comparing it to point-scanning multiphoton microscopy. Measurements are performed in a variety of mouse organs in order to provide practical guidance as to the achievable penetration depth for both imaging techniques. It is found that two-photon scanning microscopy has approximately twice the penetration depth of temporal-focusing microscopy, and that penetration depth is organ-specific; the heart has the lowest penetration depth, followed by the liver, lungs, and kidneys, then the spleen, and finally white adipose tissue.National Institutes of Health (U.S.) (NIH-5-P41-EB015871-27)National Institutes of Health (U.S.) (DP3-DK101024 01)National Institutes of Health (U.S.) (1-U01-NS090438-01)National Institutes of Health (U.S.) (1-R01-EY017656 -0,6A1)National Institutes of Health (U.S.) (1-R01-HL121386-01A1)National Institutes of Health (U.S.) (NIH 5U54 CA151884-04)National Institutes of Health (U.S.) (9-P41-EB015871-26A1

    Using the shortwave infrared to image middle ear pathologies

    Get PDF
    Visualizing structures deep inside opaque biological tissues is one of the central challenges in biomedical imaging. Optical imaging with visible light provides high resolution and sensitivity; however, scattering and absorption of light by tissue limits the imaging depth to superficial features. Imaging with shortwave infrared light (SWIR, 1–2 μm) shares many advantages of visible imaging, but light scattering in tissue is reduced, providing sufficient optical penetration depth to noninvasively interrogate subsurface tissue features. However, the clinical potential of this approach has been largely unexplored because suitable detectors, until recently, have been either unavailable or cost prohibitive. Here, taking advantage of newly available detector technology, we demonstrate the potential of SWIR light to improve diagnostics through the development of a medical otoscope for determining middle ear pathologies. We show that SWIR otoscopy has the potential to provide valuable diagnostic information complementary to that provided by visible pneumotoscopy. We show that in healthy adult human ears, deeper tissue penetration of SWIR light allows better visualization of middle ear structures through the tympanic membrane, including the ossicular chain, promontory, round window niche, and chorda tympani. In addition, we investigate the potential for detection of middle ear fluid, which has significant implications for diagnosing otitis media, the overdiagnosis of which is a primary factor in increased antibiotic resistance. Middle ear fluid shows strong light absorption between 1,400 and 1,550 nm, enabling straightforward fluid detection in a model using the SWIR otoscope. Moreover, our device is easily translatable to the clinic, as the ergonomics, visual output, and operation are similar to a conventional otoscope.United States. National Institutes of Health (9-P41-EB015871-26A1)Massachusetts Institute of Technology. Institute for Soldier Nanotechnologies (W911NF-13-D-0001

    Preventing cation intermixing enables 50% quantum yield in sub-15 nm short-wave infrared-emitting rare-earth based core-shell nanocrystals

    Get PDF
    Short-wave infrared (SWIR) fluorescence could become the new gold standard in optical imaging for biomedical applications due to important advantages such as lack of autofluorescence, weak photon absorption by blood and tissues, and reduced photon scattering coefficient. Therefore, contrary to the visible and NIR regions, tissues become translucent in the SWIR region. Nevertheless, the lack of bright and biocompatible probes is a key challenge that must be overcome to unlock the full potential of SWIR fluorescence. Although rare-earth-based core-shell nanocrystals appeared as promising SWIR probes, they suffer from limited photoluminescence quantum yield (PLQY). The lack of control over the atomic scale organization of such complex materials is one of the main barriers limiting their optical performance. Here, the growth of either homogeneous (α-NaYF4_4) or heterogeneous (CaF2_2) shell domains on optically-active α-NaYF4_4:Yb:Er (with and without Ce3+^{3+} co-doping) core nanocrystals is reported. The atomic scale organization can be controlled by preventing cation intermixing only in heterogeneous core-shell nanocrystals with a dramatic impact on the PLQY. The latter reached 50% at 60 mW/cm2^2; one of the highest reported PLQY values for sub-15 nm nanocrystals. The most efficient nanocrystals were utilized for in vivo imaging above 1450 nm

    B Cell Depletion Reduces the Number of Autoreactive T Helper Cells and Prevents Glucose-6-Phosphate Isomerase-Induced Arthritis

    Get PDF
    The therapeutic benefit of B cell depletion in patients with rheumatoid arthritis has provided proof of concept that B cells are relevant for the pathogenesis of arthritis. It remains unknown which B cell effector functions contribute to the induction or chronification of arthritis. We studied the clinical and immunological effects of B cell depletion in glucose-6-phosphate isomerase-induced arthritis. We targeted CD22 to deplete B cells. Mice were depleted of B cells before or after immunization with glucose-6-phosphate isomerase (G6PI). The clinical and histological effects were studied. G6PI-specific antibody responses were measured by ELISA. G6PI-specific T helper (Th) cell responses were assayed by polychromatic flow cytometry. B cell depletion prior to G6PI-immunization prevented arthritis. B cell depletion after immunization ameliorated arthritis, whereas B cell depletion in arthritic mice was ineffective. Transfer of antibodies from arthritic mice into B cell depleted recipients did not reconstitute arthritis. B cell depleted mice harbored much fewer G6PI-specific Th cells than control animals. B cell depletion prevents but does not cure G6PI-induced arthritis. Arthritis prevention upon B cell depletion is associated with a drastic reduction in the number of G6PI-specific effector Th cells

    Neutrophil responses to Aspergillosis : new roles for old players

    Get PDF
    Neutrophils are professional phagocytic cells that play a crucial role in innate immunity. Through an assortment of antifungal effector mechanisms, neutrophils are essential in controlling the early stages of fungal infection. These mechanisms range from the production of reactive oxygen intermediates and release of antimicrobial enzymes to the formation of complex extracellular traps that aid in the elimination of the fungus. Their importance in antifungal immunity is supported by the extreme susceptibility to infection of patients with primary (e.g., chronic granulomatous disease) or acquired (e.g., undergoing immunosuppressive therapy) neutrophil deficiency. More recently, common genetic variants affecting neutrophil antifungal capacity have also been disclosed as major risk factors for aspergillosis in conditions of generalized immune deficiency. The present review revisits the role of neutrophils in the host response against Aspergillus and highlights the consequences of their deficiency in susceptibility to aspergillosis.This work was supported by a Research Grant from the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). Cristina Cunha was supported by the Fundacao para a Ciencia e Tecnologia, Portugal (contract SFRH/BPD/96176/2013)

    Pure seminoma: A review and update

    Get PDF
    Pure seminoma is a rare pathology of the young adult, often discovered in the early stages. Its prognosis is generally excellent and many therapeutic options are available, especially in stage I tumors. High cure rates can be achieved in several ways: standard treatment with radiotherapy is challenged by surveillance and chemotherapy. Toxicity issues and the patients' preferences should be considered when management decisions are made. This paper describes firstly the management of primary seminoma and its nodal involvement and, secondly, the various therapeutic options according to stage

    Next-generation in vivo optical imaging with short-wave infrared quantum dots

    Get PDF
    The short-wavelength infrared region (SWIR; 1000—2000 nm) provides several advantages over the visible and near-infrared regions for in vivo imaging. The general lack of autofluorescence, low light absorption by blood and tissue, and reduced scattering can render a mouse translucent when imaged in the SWIR region. Despite these advantages, the lack of a versatile emitter platform has prevented its general adoption by the biomedical research community. Here we introduce high-quality SWIR-emitting core/shell quantum dots (QDs) for the next generation of in vivo SWIR imaging. Our QDs exhibit a dramatically higher emission quantum yield (QY) than previously described SWIR probes, as well as a narrow and size-tunable emission that allows for multiplexing in the SWIR region. To demonstrate some of its capabilities, we used this imaging platform to measure the heartbeat and breathing rates in awake and unrestrained mice, as well as to quantify the metabolic turnover rates of lipoproteins in several organs simultaneously in real time in mice. Finally, we generate detailed three-dimensional quantitative flow maps of brain vasculature by intravital microscopy and visualize the differences between healthy tissue and a tumor in the brain. In conclusion, SWIR QDs enable biological optical imaging with an unprecedented combination of deep penetration, high spatial resolution, and fast acquisition speed

    Geoeconomic variations in epidemiology, ventilation management, and outcomes in invasively ventilated intensive care unit patients without acute respiratory distress syndrome: a pooled analysis of four observational studies

    Get PDF
    Background: Geoeconomic variations in epidemiology, the practice of ventilation, and outcome in invasively ventilated intensive care unit (ICU) patients without acute respiratory distress syndrome (ARDS) remain unexplored. In this analysis we aim to address these gaps using individual patient data of four large observational studies. Methods: In this pooled analysis we harmonised individual patient data from the ERICC, LUNG SAFE, PRoVENT, and PRoVENT-iMiC prospective observational studies, which were conducted from June, 2011, to December, 2018, in 534 ICUs in 54 countries. We used the 2016 World Bank classification to define two geoeconomic regions: middle-income countries (MICs) and high-income countries (HICs). ARDS was defined according to the Berlin criteria. Descriptive statistics were used to compare patients in MICs versus HICs. The primary outcome was the use of low tidal volume ventilation (LTVV) for the first 3 days of mechanical ventilation. Secondary outcomes were key ventilation parameters (tidal volume size, positive end-expiratory pressure, fraction of inspired oxygen, peak pressure, plateau pressure, driving pressure, and respiratory rate), patient characteristics, the risk for and actual development of acute respiratory distress syndrome after the first day of ventilation, duration of ventilation, ICU length of stay, and ICU mortality. Findings: Of the 7608 patients included in the original studies, this analysis included 3852 patients without ARDS, of whom 2345 were from MICs and 1507 were from HICs. Patients in MICs were younger, shorter and with a slightly lower body-mass index, more often had diabetes and active cancer, but less often chronic obstructive pulmonary disease and heart failure than patients from HICs. Sequential organ failure assessment scores were similar in MICs and HICs. Use of LTVV in MICs and HICs was comparable (42\ub74% vs 44\ub72%; absolute difference \u20131\ub769 [\u20139\ub758 to 6\ub711] p=0\ub767; data available in 3174 [82%] of 3852 patients). The median applied positive end expiratory pressure was lower in MICs than in HICs (5 [IQR 5\u20138] vs 6 [5\u20138] cm H2O; p=0\ub70011). ICU mortality was higher in MICs than in HICs (30\ub75% vs 19\ub79%; p=0\ub70004; adjusted effect 16\ub741% [95% CI 9\ub752\u201323\ub752]; p<0\ub70001) and was inversely associated with gross domestic product (adjusted odds ratio for a US$10 000 increase per capita 0\ub780 [95% CI 0\ub775\u20130\ub786]; p<0\ub70001). Interpretation: Despite similar disease severity and ventilation management, ICU mortality in patients without ARDS is higher in MICs than in HICs, with a strong association with country-level economic status. Funding: No funding

    Crowdsourcing hypothesis tests: Making transparent how design choices shape research results

    Get PDF
    To what extent are research results influenced by subjective decisions that scientists make as they design studies? Fifteen research teams independently designed studies to answer fiveoriginal research questions related to moral judgments, negotiations, and implicit cognition. Participants from two separate large samples (total N > 15,000) were then randomly assigned to complete one version of each study. Effect sizes varied dramatically across different sets of materials designed to test the same hypothesis: materials from different teams renderedstatistically significant effects in opposite directions for four out of five hypotheses, with the narrowest range in estimates being d = -0.37 to +0.26. Meta-analysis and a Bayesian perspective on the results revealed overall support for two hypotheses, and a lack of support for three hypotheses. Overall, practically none of the variability in effect sizes was attributable to the skill of the research team in designing materials, while considerable variability was attributable to the hypothesis being tested. In a forecasting survey, predictions of other scientists were significantly correlated with study results, both across and within hypotheses. Crowdsourced testing of research hypotheses helps reveal the true consistency of empirical support for a scientific claim.</div
    corecore