27 research outputs found

    Targeting HSP90 by the novel inhibitor NVP-AUY922 reduces growth and angiogenesis of pancreatic cancer

    No full text
    AIM: To evaluate the impact of heat-shock protein 90 (HSP90) blockade by the novel inhibitor NVP-AUY922, on tumor growth and angiogenesis in pancreatic cancer. MATERIALS AND METHODS: Effects of NVP-AUY922 on signaling pathways were evaluated by western blotting. Cell motility of cancer cells, pericytes and endothelial cells was investigated in Boyden chambers. Impact of HSP90 blockade on pancreatic tumor growth and angiogenesis were studied in in vivo tumor models. RESULTS: NVP-AUY922 effectively inhibited cancer cell growth. Moreover, HSP90 inhibition potently interfered with multiple signaling pathways in cancer cells, as well as endothelial cells and pericytes, leading to significant reduction of pro-migratory and invasive properties of these cell types. In vivo, treatment with NVP-AUY922 significantly inhibited growth and vascularization of pancreatic cancer at doses far below the maximum tolerated dose. CONCLUSION: HSP90 blockade by the novel synthetic inhibitor NVP-AUY922 effectively reduces pancreatic cancer progression through direct effects on cancer cells, as well as on endothelial cells and pericytes

    Dual inhibition of Raf and VEGFR2 reduces growth and vascularization of hepatocellular carcinoma in an experimental model.

    No full text
    BACKGROUND AND AIMS: Activation of the mitogen-activated protein kinase-extracellular-signal-regulated kinase (ERK) pathways plays an important role in the progression of hepatocellular carcinoma (HCC). Importantly, Raf kinases are principal effectors within this oncogenic signaling cascade. We hypothesized that concomitant inhibition of Raf and vascular endothelial growth factor receptor 2 (VEGFR2) will affect tumor growth and angiogenesis of HCC. MATERIALS AND METHODS: Human HCC cell lines, endothelial cells (EC), and vascular smooth muscle cells (VSMC) were used. For blocking Raf kinase and VEGFR2, the small molecule inhibitor NVP-AAL881 (Novartis, USA) was used. Activation of signaling intermediates was assessed by Western blotting, and changes in cell motility were evaluated in migration assays. Effects of NVP-AAL881 on HCC growth were determined in a subcutaneous tumor model. RESULTS: NVP-AAL881 disrupted activation of ERK and STAT3 in HCC cells and reduced cancer cell motility. In addition, the migration of ECs and VSMC was also significantly impaired. In ECs, HCC-conditioned media-induced activation of STAT3 was diminished by NVP-AAL881 treatment. In vivo, NVP-AAL881 significantly reduced tumor growth, CD31-vessel area, and numbers of BrdU-positive proliferating tumor cells. CONCLUSIONS: Combined inhibition of Raf and VEGFR2 disrupts oncogenic signaling and efficiently reduces tumor growth and vascularization of HCC. Hence, this strategy could prove valuable for therapy of HCC

    Overexpression of PDGF-BB decreases colorectal and pancreatic cancer growth by increasing tumor pericyte content

    No full text
    We hypothesized that overexpression of PDGF-BB in colorectal cancer (CRC) and pancreatic cancer cells would result in increased pericyte coverage of ECs in vivo, rendering the tumor vasculature more resistant to antiangiogenic therapy. We stably transfected the cDNA for the PDGF-B into HT-29 human CRC and FG human pancreatic cancer cells. Surprisingly, when HT-29 or FG parental and transfected cells were injected into mice (subcutaneously and orthotopically), we observed marked inhibition of tumor growth in the PDGF-BB–overexpressing clones. In the PDGF-BB–overexpressing tumors, we observed an increase in pericyte coverage of ECs. Treatment of PDGF-BB–overexpressing tumors with imatinib mesylate (PDGFR inhibitor) resulted in increased growth and decreased total pericyte content compared with those in untreated PDGF-BB–overexpressing tumors. In vitro studies demonstrated the ability of VSMCs to inhibit EC proliferation by approximately 50%. These data show that increasing the pericyte content of the tumor microenvironment inhibits the growth of angiogenesis-dependent tumors. Single-agent therapy targeting PDGF receptor must be used with caution in tumors when PDGFR is not the target on the tumor cell itself
    corecore