6 research outputs found

    Articular cartilage mineralization in osteoarthritis of the hip

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to examine the frequency of articular cartilage calcification in patients with end-stage hip OA. Further, its impact on the clinical situation and the OA severity are analyzed.</p> <p>Methods</p> <p>Eighty patients with OA of the hip who consecutively underwent total hip replacement were prospectively evaluated, and 10 controls were included. The patients' X-rays were analyzed for the presence of articular cartilage mineralization. A Harris Hip Score (HHS) was preoperatively calculated for every patient.</p> <p>Slab specimens from the femoral head of bone and cartilage and an additional square centimeter of articular cartilage from the main chondral defect were obtained from each patient for analysis of mineralization by digital contact radiography (DCR). Histological grading was also performed. In a subset of 20 patients, minerals were characterized with an electron microscope (FE-SEM).</p> <p>Results</p> <p>Calcifications were seen in all OA cartilage and slab specimens using DCR, while preoperative X-rays revealed calcification in only 17.5%. None of the control cartilage specimens showed mineralization. There was a highly significant inverse correlation between articular cartilage calcification and preoperative HHS. Histological OA grade correlated positively with the amount of matrix calcification. FE-SEM analysis revealed basic calcium phosphate (BCP) as the predominant mineral; CPPD crystals were found in only two patients.</p> <p>Conclusions</p> <p>Articular cartilage calcification is a common event in osteoarthritis of the hip. The amount of calcification correlates with clinical symptoms and histological OA grade.</p

    Role of Human Mitochondrial Nfs1 in Cytosolic Iron-Sulfur Protein Biogenesis and Iron Regulation

    No full text
    The biogenesis of iron-sulfur (Fe/S) proteins in eukaryotes is a complex process involving more than 20 components. So far, functional investigations have mainly been performed in Saccharomyces cerevisiae. Here, we have analyzed the role of the human cysteine desulfurase Nfs1 (huNfs1), which serves as a sulfur donor in biogenesis. The protein is located predominantly in mitochondria, but small amounts are present in the cytosol/nucleus. huNfs1 was depleted efficiently in HeLa cells by a small interfering RNA (siRNA) approach, resulting in a drastic growth retardation and striking morphological changes of mitochondria. The activities of both mitochondrial and cytosolic Fe/S proteins were strongly impaired, demonstrating that huNfs1 performs an essential function in Fe/S protein biogenesis in human cells. Expression of murine Nfs1 (muNfs1) in huNfs1-depleted cells restored both growth and Fe/S protein activities to wild-type levels, indicating the specificity of the siRNA depletion approach. No complementation of the growth retardation was observed, when muNfs1 was synthesized without its mitochondrial presequence. This extramitochondrial muNfs1 did not support maintenance of Fe/S protein activities, neither in the cytosol nor in mitochondria. In conclusion, our study shows that the essential huNfs1 is required inside mitochondria for efficient maturation of cellular Fe/S proteins. The results have implications for the regulation of iron homeostasis by cytosolic iron regulatory protein 1

    Human Nbp35 Is Essential for both Cytosolic Iron-Sulfur Protein Assembly and Iron Homeostasisâ–¿

    No full text
    The maturation of cytosolic iron-sulfur (Fe/S) proteins in mammalian cells requires components of the mitochondrial iron-sulfur cluster assembly and export machineries. Little is known about the cytosolic components that may facilitate the assembly process. Here, we identified the cytosolic soluble P-loop NTPase termed huNbp35 (also known as Nubp1) as an Fe/S protein, and we defined its role in the maturation of Fe/S proteins in HeLa cells. Depletion of huNbp35 by RNA interference decreased cell growth considerably, indicating its essential function. The deficiency in huNbp35 was associated with an impaired maturation of the cytosolic Fe/S proteins glutamine phosphoribosylpyrophosphate amidotransferase and iron regulatory protein 1 (IRP1), while mitochondrial Fe/S proteins remained intact. Consequently, huNbp35 is specifically involved in the formation of extramitochondrial Fe/S proteins. The impaired maturation of IRP1 upon huNbp35 depletion had profound consequences for cellular iron metabolism, leading to decreased cellular H-ferritin, increased transferrin receptor levels, and higher transferrin uptake. These properties clearly distinguished huNbp35 from its yeast counterpart Nbp35, which is essential for cytosolic-nuclear Fe/S protein assembly but plays no role in iron regulation. huNbp35 formed a complex with its close homologue huCfd1 (also known as Nubp2) in vivo, suggesting the existence of a heteromeric P-loop NTPase complex that is required for both cytosolic Fe/S protein assembly and cellular iron homeostasis

    Treatment of osteochondritis dissecans of the femoral condyle with autologous bone grafts and matrix-supported autologous chondrocytes

    No full text
    The objective of this study was to determine the clinical outcome of combined bone grafting and matrix-supported autologous chondrocyte transplantation in patients with osteochondritis dissecans of the knee. Between January 2003 and March 2005, 21 patients (mean age 29.33 years) with symptomatic osteochondritis dissecans (OCD) of the medial or lateral condyle (grade III or IV) of the knee underwent reconstruction of the joint surface by autologous bone grafts and matrix-supported autologous chondrocyte transplantation. Patients were followed up at three, six, 12 and 36 months to determine outcomes by clinical evaluation based on Lysholm score, IKDC and ICRS score. Clinical results showed a significant improvement of Lysholm-score and IKDC score. With respect to clinical assessment, 18 of 21 patients showed good or excellent results 36 months postoperatively. Our study suggests that treatment of OCD with autologous bone grafts and matrix-supported autologous chondrocytes is a possible alternative to osteochondral cylinder transfer or conventional ACT
    corecore