5,197 research outputs found

    Texture mediated grain boundary network design in two dimensions

    Get PDF
    While materials design in the context of texture dependent properties is well developed, theoretical tools for microstructure design in the context of grain boundary sensitive properties have not yet been established. In the present work, we present an invertible relationship between texture and grain boundary network structure for the case of spatially uncorrelated two-dimensional textures. By exploiting this connection, we develop mathematical tools that permit the rigorous optimization of grain boundary network structure. Using a specific multi-objective materials design case study involving elastic, plastic and kinetic properties, we illustrate the utility of this texture mediated approach to grain boundary network design. We obtain a microstructure that minimizes grain boundary network diffusivity while simultaneously improving yield strength by an amount equal to half of the theoretically possible range. The theoretical tools developed here could complement experimental grain boundary engineering efforts to help accelerate the discovery of materials with improved performance.United States. Department of Energy. Office of Basic Energy Sciences (Grant DE-SC0008926

    A Simple Approach to Atomic Structure Characterization for Machine Learning of Grain Boundary Structure-Property Models

    Get PDF
    Grain boundaries (GBs) have a significant influence on the properties of crystalline materials. Machine learning approaches present an attractive route to develop atomic structure-property models for GBs because of the complexity of their structure. However, the application of such techniques requires an appropriate descriptor of the atomic structure. Unfortunately, common crystal structure identification techniques cannot be applied to characterize the structure of the vast majority of GB atoms (50–98% are classified as “other”). This suggests a critical need for atomic structure descriptors capable of identifying arbitrary atomic environments. In this work we present a simple procedure that facilitates the identification of arbitrary atomic structures present in GBs. We apply this approach to characterize the atomic structure of the 388 GBs from the Olmsted data set (Olmsted et al., 2009). We show how this approach facilitates visualization of GB atomic structures in a way that reveals important structural information. We test the recently proposed hypothesis that Σ3 GBs contain facets of the GBs that form the corners of the corresponding GB plane fundamental zone. Finally, we briefly demonstrate how the structure descriptors resulting from our approach can be used as inputs to machine learning approaches for the development of atomic structure-property models for GBs

    Global analysis of differential gene expression within the porcine conceptus transcriptome as it transitions through spherical, ovoid, and tubular morphologies during the initiation of elongation

    Get PDF
    This study aimed to identify transcriptome differences between distinct or transitional stage spherical, ovoid, and tubular porcine blastocysts throughout the initiation of elongation. We performed a global transcriptome analysis of differential gene expression using RNA‐Seq with high temporal resolution between spherical, ovoid, and tubular stage blastocysts at specific sequential stages of development from litters containing conceptus populations of distinct or transitional blastocysts. After RNA‐Seq analysis, significant differentially expressed genes (DEGs) and pathways were identified between distinct morphologies or sequential development stages. Overall, 1898 significant DEGs were identified between distinct spherical and ovoid morphologies, with 311 total DEGs between developmental stages throughout this first morphological transition, while 15 were identified between distinct ovoid and tubular, with eight total throughout these second morphological transition developmental stages. The high quantity of DEGs and pathways between conceptus stages throughout the spherical to ovoid transition suggests the importance of gene regulation during this first morphological transition for initiating elongation. Further, extensive DEG coverage of known elongation signaling pathways was illustrated from spherical to ovoid, and regulation of lipid signaling and membrane/ECM remodeling across these early conceptus stages were implicated as essential to this process, providing novel insights into potential mechanisms governing this rapid morphological change

    Nondipole Effects in the Photoionization of Xe 4d5/2 and 4d3/2: Evidence for Quadrupole Satellites

    Full text link
    Measurements of nondipole parameters in spin-orbit-resolved Xe 4d photoionization demonstrate dynamical differences arising from relativistic effects. The experimental data do not agree with relativistic random-phase approximation calculations of single ionization dipole and quadrupole channels. It is suggested that the discrepancy is due to the omission of multiple-excitation quadrupole channels, i.e., quadrupole satellite transitions

    Full-Shell X-Ray Optics Development at NASA Marshall Space Flight Center

    Get PDF
    NASAs Marshall Space Flight Center (MSFC) maintains an active research program toward the development of high-resolution, lightweight, grazing-incidence x-ray optics to serve the needs of future x-ray astronomy missions such as Lynx. MSFC development efforts include both direct fabrication (diamond turning and deterministic computer-controlled polishing) of mirror shells and replication of mirror shells (from figured, polished mandrels). Both techniques produce full-circumference monolithic (primary + secondary) shells that share the advantages of inherent stability, ease of assembly, and low production cost. However, to achieve high-angular resolution, MSFC is exploring significant technology advances needed to control sources of figure error including fabrication- and coating-induced stresses and mounting-induced distortions
    corecore