185 research outputs found

    The relationship between plant growth and water consumption : a history from the classical four elements to modern stable isotopes

    Get PDF
    Context : The relationship between plant growth and water consumption has for a long time occupied the minds of philosophers and natural scientists. The ratio between biomass accumulation and water consumption is known as water use efficiency and is widely relevant today in fields as diverse as crop improvement, forest ecology and climate change. Defined at scales varying from single leaf physiology to whole plants, it shows how botanical investigations changed through time, generally in tandem with developing disciplines and improving methods. The history started as a purely philosophical question by Greek philosophers of how plants grow, progressed through thought and actual experiments, towards an interest in plant functioning and their relationship to the environment. Aims : This article retraces this history by elucidating the progression of scientific questions posed through the centuries, presents the main methodological and conceptual developments. Conclusion : Research on water use efficiency followed a path from the whole plant to molecular mechanisms and is still a very active research field across nearly all levels of botanical research

    Microgeographic adaptation and the effect of pollen flow on the adaptive potential of a temperate tree species

    Get PDF
    Recent interest for microgeographic adaptation, i.e. adaptation at spatial scales compatible with substantial amount of gene dispersal, offers to reconsider the scale at which evolution occurs (Richardson et al. 2014). Whether gene flow is constraining or facilitating local adaptation at this fine spatial scale remains an unresolved question. Too important gene flow would overwhelm the effects of natural selection and decrease local adaptation along environmental gradients. Conversely, gene flow, and particularly long-distance dispersal events, could play a major role in resupplying the genetic variation of populations and favouring the spread of beneficial alleles (Kremer et al. 2012). Hence, the high dispersal capacities of trees are often assumed to be the main process maintaining the large levels of genetic variation measured in their natural populations. However, evidences for microgeographic adaptation and the quantitative assessment of the impact of gene flow on adaptive genetic variation are still limited in most temperate trees. Here, we sampled 60 open-pollinated families of European beech (Fagus sylvatica L.) from three natural plots, spreading along a short elevation gradient (∼1.5 km) at the warm margin of this species distribution. We analysed the phenotypic and genotypic data of ∼2,300 seedlings grown in a common garden. We focused on 11 potentially adaptive traits with significant heritabilities (Gauzere et al. 2016) and tested for signature of local selection on quantitative trait differentiation. We then identified the offspring likely originating from local or distant pollen immigration events and quantified the role of gene flow in increasing locally the additive variance of traits under selection. We found a significant signal of adaptive differentiation among plots separated by less than one kilometre, with local selection acting on growth and phenological traits. We found that trees in the plots at high elevation, experiencing the lowest temperature conditions, flushed earlier and had a higher height and diameter growth in our common garden than trees from the plot at low elevation. Beech populations originating from higher longitude or elevation have also been shown to be genetically earlier in provenance tests, suggesting that these populations evolved phenological traits promoting a longer vegetation period. At this southern margin of the species, the reduced allocation to stem growth at the low elevation plot is likely an adaptive response to drought, which has previously been described by comparing marginal vs central beech populations. Consistently with theoretical expectations, our results suggest a beneficial effect of pollen dispersal by increasing the genetic diversity for these locally differentiated traits. These effects were quantitatively high, with more than twice higher genetic variance for immigrant than local offspring, although with large standard errors around estimates. Our results highlight that local selection is an important evolutionary force in natural tree populations, and provide a strong evidence that adaptive genetic differentiation can occur despite high gene flow. For the two genetically differentiated traits, our analyses suggested a beneficial effect of pollen dispersal by increasing genetic diversity after one episode of reproduction. The findings suggest that conservation and management interventions to facilitate movement of gametes along short ecological gradients would boost genetic diversity of individual tree populations, and thereby enhance their adaptive potential

    If your data distribution shifts, use self-learning

    Full text link
    We demonstrate that self-learning techniques like entropy minimization and pseudo-labeling are simple and effective at improving performance of a deployed computer vision model under systematic domain shifts. We conduct a wide range of large-scale experiments and show consistent improvements irrespective of the model architecture, the pre-training technique or the type of distribution shift. At the same time, self-learning is simple to use in practice because it does not require knowledge or access to the original training data or scheme, is robust to hyperparameter choices, is straight-forward to implement and requires only a few adaptation epochs. This makes self-learning techniques highly attractive for any practitioner who applies machine learning algorithms in the real world. We present state-of-the-art adaptation results on CIFAR10-C (8.5% error), ImageNet-C (22.0% mCE), ImageNet-R (17.4% error) and ImageNet-A (14.8% error), theoretically study the dynamics of self-supervised adaptation methods and propose a new classification dataset (ImageNet-D) which is challenging even with adaptation.Comment: Web: https://domainadaptation.org/selflearnin

    Element content and expression of genes of interest in guard cells are connected to spatiotemporal variations in stomatal conductance

    Get PDF
    Element content and expression of genes of interest on single cell types, such as stomata, provide valuable insights into their specific physiology, improving our understanding of leaf gas exchange regulation. We investigated how far differences in stomatal conductance (g(s)) can be ascribed to changes in guard cells functioning in amphistomateous leaves. g(s) was measured during the day on both leaf sides, on well-watered and drought-stressed trees (two Populus euramericana Moench and two Populus nigra L. genotypes). In parallel, guard cells were dissected for element content and gene expressions analyses. Both were strongly arranged according to genotype, and drought had the lowest impact overall. Normalizing the data by genotype highlighted a structure on the basis of leaf sides and time of day both for element content and gene expression. Guard cells magnesium, phosphorus, and chlorine were the most abundant on the abaxial side in the morning, where g(s) was at the highest. In contrast, genes encoding H+-ATPase and aquaporins were usually more abundant in the afternoon, whereas genes encoding Ca2+-vacuolar antiporters, K+ channels, and ABA-related genes were in general more abundant on the adaxial side. Our work highlights the unique physiology of each leaf side and their analogous rhythmicity through the day

    Effects of kinetics of light-induced stomatal responses on photosynthesis and water-use efficiency

    Get PDF
    Both photosynthesis (A) and stomatal conductance (g s ) respond to changing irradiance, yet stomatal responses are an order of magnitude slower than photosynthesis, resulting in noncoordination between A and g s in dynamic light environments. Infrared gas exchange analysis was used to examine the temporal responses and coordination of A and g s to a step increase and decrease in light in a range of different species, and the impact on intrinsic water use efficiency was evaluated. The temporal responses revealed a large range of strategies to save water or maximize photosynthesis in the different species used in this study but also displayed an uncoupling of A and g s in most of the species. The shape of the guard cells influenced the rapidity of response and the overall g s values achieved, with different impacts on A and W i . The rapidity of g s in dumbbell-shaped guard cells could be attributed to size, whilst in elliptical-shaped guard cells features other than anatomy were more important for kinetics. Our findings suggest significant variation in the rapidity of stomatal responses amongst species, providing a novel target for improving photosynthesis and water use

    Evaluation of early-phase [F-18]-florbetaben PET acquisition in clinical routine cases

    Get PDF
    Objectives: In recent years several [F-18]-labelled amyloid PET tracers have been developed and have obtained clinical approval. There is accumulating evidence that early (post injection) acquisitionswith these tracers are equally informative as conventional blood flow andmetabolismstudies for diagnosis of Alzheimer's disease, but there have been few side-by-side studies. Therefore, we investigated the performance of early acquisitions of [F-18]florbetaben (FBB) PET compared to [F-18]-fluorodeoxyglucose (FDG) PET in a clinical setting. Methods: All subjects were recruited with clinical suspicion of dementia due to neurodegenerative disease. FDG PET was undertaken by conventional methods, and amyloid PET was performed with FBB, with early recordings for the initial 10 min (early-phase FBB), and late recordings at 90-110 min p.i. (late-phase FBB). Regional SUVR with cerebellar and globalmean normalization were calculated for early-phase FBB and FDG PET. Pearson correlation coefficients between FDG and early-phase FBB were calculated for predefined cortical brain regions. Furthermore, a visual interpretation of disease pattern using 3-dimensional stereotactic surface projections (3DSSP) was performed, with assessment of intra-reader agreement. Results: Among a total of 33 patients (mean age 67.5 +/- 11.0 years) included in the study, 18 were visually rated amyloid-positive, and 15 amyloid-negative based on late-phase FBB scans. Correlation coefficients for earlyphase FBB vs. FDG scans displayed excellent agreement in all target brain regions for global mean normalization. Cerebellar normalization gave strong, but significantly lower correlations. 3D representations of early-phase FBB visually resembled the corresponding FDG PET images, irrespective of the amyloid-status of the late FBB scans. Conclusions: Early-phase FBB acquisitions correlate on a relative quantitative and visual level with FDG PET scans, irrespective of the amyloid plaque density assessed in late FBB imaging. Thus, early-phase FBB uptake depicts a metabolism-like image, suggesting it as a valid surrogatemarker for synaptic dysfunction, which could ultimately circumvent the need for additional FDG PET investigation in diagnosis of dementia. (C) 2016 The Author(s). Published by Elsevier Inc

    Neuronal injury biomarkers for assessment of the individual cognitive reserve in clinically suspected Alzheimer's disease

    Get PDF
    Objectives: Many predictive or influencing factors have emerged in investigations of the cognitive reserve model of patients with Alzheimer's disease (AD). For example, neuronal injury, which correlates with cognitive decline in AD, can be assessed by [F-18]-fluorodeoxyglucose positron-emission-tomography (FDG-PET), structural magnetic resonance imaging (MRI) and total tau in cerebrospinal fluid (CSFt-tau), all according to the A/T/N-classification. The aim of this study was to calculate residual cognitive performance based on neuronal injury biomarkers as a surrogate of cognitive reserve, and to test the predictive value of this index for the individual clinical course. Methods: 110 initially mild cognitive impaired and demented subjects (age 71 +/- 8 years) with a final diagnosis of AD dementia were assessed at baseline by clinical mini-mental-state-examination (MMSE), FDG-PET, MRI and CSFt-tau. All neuronal injury markers were tested for an association with clinical MMSE and the resulting residuals were correlated with years of education. We used multiple regression analysis to calculate the expected MMSE score based on neuronal injury biomarkers and covariates. The residuals of the partial correlation for each biomarker and the predicted residualized memory function were correlated with individual cognitive changes measured during clinical follow-up (27 +/- 13 months). Results: FDG-PET correlated highly with clinical MMSE (R = - 0.49, p < .01), whereas hippocampal atrophy to MRI (R = -0.15, p = .14) and CSFt-tau, (R = -0.12, p = .22) showed only weak correlations. Residuals of all neuronal injury biomarker regressions correlated significantly with education level, indicating them to be surrogates of cognitive reserve. A positive residual was associated with faster cognitive deterioration at follow-up for the residuals of stand-alone FDG-PET (R = - 0.36, p = .01) and the combined residualized memory function model (R = - 0.35, p = .02). Conclusions: These findings suggest that subjects with higher cognitive reserve had accumulated more pathology, which subsequently caused a faster cognitive decline over time. Together with previous findings suggesting that higher reserve is associated with slower cognitive decline, we propose a biphasic reserve effect, with an initially protective phase followed by more rapid decompensation once the protection is overwhelmed
    corecore