28 research outputs found

    The Open Anchoring Quest Dataset: Anchored Estimates from 96 Studies on Anchoring Effects

    Get PDF
    People’s estimates are biased toward previously considered numbers (anchoring). We have aggregated all available data from anchoring studies that included at least two anchors into one large dataset. Data were standardized to comprise one estimate per row, coded according to a wide range of variables, and are available for download and analyses online (https://metaanalyses.shinyapps.io/OpAQ/). Because the dataset includes both original and meta-data it allows for fine-grained analyses (e.g., correlations of estimates for different tasks) but also for meta-analyses (e.g., effect sizes for anchoring effects)

    SOCIETY NEWS

    No full text

    Src phosphorylation of Alix/AIP1 modulates its interaction with binding partners and antagonizes its activities

    No full text
    Alix/AIP1 is an adaptor protein involved in regulating the function of receptor and cytoskeleton-associated tyrosine kinases. Here, we investigated its interaction with and regulation by Src. Tyr319 of Alix bound the isolated Src homology-2 (SH2) domain and was necessary for interaction with intact Src. A proline-rich region in the C terminus of Alix bound the Src SH3 domain, but this interaction was dependent on the release of the Src SH2 domain from its Src internal ligand either by interaction with Alix Tyr319 or by mutation of Src Tyr527. Src phosphorylated Alix at a C-terminal region rich in tyrosines, an activity that was stimulated by the presence of the Alix binding partner SETA/CIN85. Phosphorylation of Alix by Src caused it to translocate from the membrane and cytoskeleton to the cytoplasm and reduced its interaction with binding partners SETA/CIN85, epidermal growth factor receptor, and Pyk2. As a consequence of this, Src antagonized the negative regulation of receptor tyrosine kinase internalization and cell adhesion by Alix. We propose a model whereby Src antagonizes the effects of Alix by phosphorylation of its C terminus, leading to the disruption of interactions with target proteins

    The effectiveness of cucurbitacin B in BRCA1 defective breast cancer cells.

    Get PDF
    Cucurbitacin B (CuB) is one of the potential agents for long term anticancer chemoprevention. Cumulative evidences has shown that cucurbitacin B provides potent cellular biological activities such as hepatoprotective, anti-inflammatory and antimicrobial effects, but the precise mechanism of this agent is not clearly understood. We examine the biological effects on cancer cells of cucurbitacin B extracted from a Thai herb, Trichosanthes cucumerina L. The wild type (wt) BRCA1, mutant BRCA1, BRCA1 knocked-down and BRCA1 overexpressed breast cancer cells were treated with the cucurbitacin B and determined for the inhibitory effects on the cell proliferation, migration, invasion, anchorage-independent growth. The gene expressions in the treated cells were analyzed for p21/(Waf1), p27(Kip1) and survivin. Our previous study revealed that loss of BRCA1 expression leads to an increase in survivin expression, which is responsible for a reduction in sensitivity to paclitaxel. In this work, we showed that cucurbitacin B obviously inhibited knocked-down and mutant BRCA1 breast cancer cells rather than the wild type BRCA1 breast cancer cells in regards to the cellular proliferation, migration, invasion and anchorage-independent growth. Furthermore, forcing the cells to overexpress wild type BRCA1 significantly reduced effectiveness of cucurbitacin B on growth inhibition of the endogenous mutant BRCA1 cells. Interestingly, cucurbitacin B promotes the expression of p21/(Waf1) and p27(Kip1) but inhibit the expression of survivin. We suggest that survivin could be an important target of cucurbitacin B in BRCA1 defective breast cancer cells

    Cell viability of cucurbitacin B treated BRCA1 knocked-down breast cancer cells.

    No full text
    <p>(A) and (B), BRCA1 expressions were knocked down in MCF-7 cells and MDA-MB-231 cells, respectively. Lanes 1 and 2, parental and transfected control cells. Lanes 3, shRNA-BRCA1 transfected cells. GAPDH expression represents internal control. All the densitometric values were normalized to loading controls (GAPDH), and the fold change relative to the parental control are indicated numerically above the blots. (C), Cells were treated with 1, 10, 20, 40, 60, 80 and 100 ”g/ml cucurbitacin B for 48 h. Three repetitive experiments were done and each was run in triplicate. (D), The results from the experiment shown in (C) are compared in each group at the specified concentration of 20 ”g/ml cucurbitacin B. Knocked-down BRCA1 breast cancer cells showed significant higher sensitivity to cucurbitacin B when compared to the parental cells, (* <i>p</i><0.01).</p

    The clonal anchorage-independent growth, cell migration and invasion after treatment with 12 ”g/ml cucurbitacin B.

    No full text
    <p>(A) and (B), Anchorage-independent growth with or without cucurbitacin B treatment in each group of the MCF-7 and MDA-MB-231 cells. (C) and (D), The capability of cell migration in the MCF-7 and MDA-MB-231. (E) and (F), The invasive capability of the MCF-7 and MDA-MB-231, respectively. (* <i>p</i><0.01).</p
    corecore