1,200 research outputs found

    Financial Risk Management in Commonwealth Organisations

    No full text
    In the last decade financial risk management in public sector organisations has become of greater interest to the public, politicians and regulators. Derivatives are commonly used to manage financial risk but little is known about the reasons why financial risk is managed, particularly through the use of derivatives. Furthermore, little is known about the reasons for and extent of derivative use in public sector organisations. To the authors knowledge this paper represents one of the first studies into the use of derivatives in Australian Commonwealth public sector organisations. A sample of Commonwealth organisations is surveyed on attitudes towards the use of derivatives for hedging. A variety of tests including ANOVA and t-tests are used to analyse the results. The two most important issues in the use of derivatives for hedging in the Commonwealth public sector include budgeting and reducing risks faced by management. Reducing the risks faced by management is often cited as a reason for derivative use in the private sector. It is unclear if budgeting is linked to this. Respondents from Commonwealth organisations rank other private sector reasons for derivative use, such as reducing bankruptcy and taxation relatively unimportant. Results also indicate that there are significant differences in the level of importance in some issues regarding derivative use across different organisations, particularly those with and without a documented risk management plan

    The use of derivatives in a public sector setting

    No full text
    Existing private sector models of derivative use do not readily translate into the public sector that faces the joint objectives of value maximisation and provision of a privately unprofitable mission good. This paper develops and tests a model explaining public sector derivative use in terms of budget discrepancy minimisation. Hypotheses are developed and tested using logistic regression over a sample of Australian Commonwealth Government entities. It is found that public sector derivative use is positively correlated with liabilities and size of the organisation. This is consistent with management of budget discrepancies

    Molecular beam epitaxy of free-standing bulk wurtzite AlxGa1-xN layers using a highly efficient RF plasma source

    Get PDF
    Recent developments with group III nitrides suggest AlxGa1-xN based LEDs can be new alternative commer-cially viable deep ultra-violet light sources. Due to a sig-nificant difference in the lattice parameters of GaN and AlN, AlxGa1-xN substrates would be preferable to either GaN or AlN for ultraviolet device applications. We have studied the growth of free-standing wurtzite AlxGa1-xN bulk crystals by plasma-assisted molecular beam epitaxy (PA-MBE) using a novel RF plasma source. Thick wurtz-ite AlxGa1-xN films were grown by PA-MBE on 2-inch GaAs (111)B substrates and were removed from the GaAs substrate after growth to provide free standing AlxGa1-xN samples. Growth rates of AlxGa1-xN up to 3 μm/h have been demonstrated. Our novel high efficiency RF plasma source allowed us to achieve free-standing bulk AlxGa1-xN layers in a single day’s growth, which makes our MBE bulk growth technique commercially vi-able

    Molecular beam epitaxy of free-standing bulk wurtzite AlxGa1-xN layers using a highly efficient RF plasma source

    Get PDF
    Recent developments with group III nitrides suggest AlxGa1-xN based LEDs can be new alternative commer-cially viable deep ultra-violet light sources. Due to a sig-nificant difference in the lattice parameters of GaN and AlN, AlxGa1-xN substrates would be preferable to either GaN or AlN for ultraviolet device applications. We have studied the growth of free-standing wurtzite AlxGa1-xN bulk crystals by plasma-assisted molecular beam epitaxy (PA-MBE) using a novel RF plasma source. Thick wurtz-ite AlxGa1-xN films were grown by PA-MBE on 2-inch GaAs (111)B substrates and were removed from the GaAs substrate after growth to provide free standing AlxGa1-xN samples. Growth rates of AlxGa1-xN up to 3 μm/h have been demonstrated. Our novel high efficiency RF plasma source allowed us to achieve free-standing bulk AlxGa1-xN layers in a single day’s growth, which makes our MBE bulk growth technique commercially vi-able

    A Singular Perturbation Analysis for \\Unstable Systems with Convective Nonlinearity

    Full text link
    We use a singular perturbation method to study the interface dynamics of a non-conserved order parameter (NCOP) system, of the reaction-diffusion type, for the case where an external bias field or convection is present. We find that this method, developed by Kawasaki, Yalabik and Gunton for the time-dependant Ginzburg-Landau equation and used successfully on other NCOP systems, breaks down for our system when the strength of bias/convection gets large enough.Comment: 5 pages, PostScript forma

    Transfer printed multi-color integrated devices for visible light communication applications

    Get PDF
    Integrated multi-color devices for visible light communication applications are fabricated by transfer printing blue-emitting GaN light emitting diodes (LEDs) onto a green-emitting LED array and a colloidal quantum dot color-converter structure

    Growth of free-standing bulk wurtzite AlxGa1−xN layers by molecular beam epitaxy using a highly efficient RF plasma source

    Get PDF
    The recent development of group III nitrides allows researchers world-wide to consider AlGaN based light emitting diodes as a possible new alternative deep ultra–violet light source for surface decontamination and water purification. In this paper we will describe our recent results on plasma-assisted molecular beam epitaxy (PA-MBE) growth of free-standing wurtzite AlxGa1−xN bulk crystals using the latest model of Riber's highly efficient nitrogen RF plasma source. We have achieved AlGaN growth rates up to 3 µm/h. Wurtzite AlxGa1−xN layers with thicknesses up to 100 μm were successfully grown by PA-MBE on 2-inch and 3-inch GaAs (111)B substrates. After growth the GaAs was subsequently removed using a chemical etch to achieve free-standing AlxGa1−xN wafers. Free-standing bulk AlxGa1−xN wafers with thicknesses in the range 30–100 μm may be used as substrates for further growth of AlxGa1−xN-based structures and devices. High Resolution Scanning Transmission Electron Microscopy (HR-STEM) and Convergent Beam Electron Diffraction (CBED) were employed for detailed structural analysis of AlGaN/GaAs (111)B interface and allowed us to determine the N-polarity of AlGaN layers grown on GaAs (111)B substrates. The novel, high efficiency RF plasma source allowed us to achieve free-standing AlxGa1−xN layers in a single day's growth, making this a commercially viable process
    • …
    corecore