21,525 research outputs found

    Fermionic one-loop amplitudes of the RNS superstring

    Full text link
    We investigate massless n-point one-loop amplitudes of the open RNS superstring with two external fermions and determine their worldsheet integrands. The contributing correlation functions involving spin-1/2 and spin-3/2 operators from the fermion vertices are evaluated to any multiplicity. Moreover, we introduce techniques to sum these correlators over the spin structures of the worldsheet fermions such as to manifest all cancellations due to spacetime supersymmetry. These spin sums require generalizations of the Riemann identities among Jacobi theta functions, and the results can be expressed in terms of doubly-periodic functions known from the mathematics literature on elliptic multiple zeta values. On the boundary of moduli space, our spin-summed correlators specialize to compact representations of fermionic one-loop integrands for ambitwistor strings.Comment: 42+24 pages, v2: published version, minor corrections in (4.5), (4.8) and (4.15

    Support-based lower bounds for the positive semidefinite rank of a nonnegative matrix

    Full text link
    The positive semidefinite rank of a nonnegative (m×n)(m\times n)-matrix~SS is the minimum number~qq such that there exist positive semidefinite (q×q)(q\times q)-matrices A1,…,AmA_1,\dots,A_m, B1,…,BnB_1,\dots,B_n such that S(k,\ell) = \mbox{tr}(A_k^* B_\ell). The most important, lower bound technique for nonnegative rank is solely based on the support of the matrix S, i.e., its zero/non-zero pattern. In this paper, we characterize the power of lower bounds on positive semidefinite rank based on solely on the support.Comment: 9 page

    Constructing Reference Metrics on Multicube Representations of Arbitrary Manifolds

    Full text link
    Reference metrics are used to define the differential structure on multicube representations of manifolds, i.e., they provide a simple and practical way to define what it means globally for tensor fields and their derivatives to be continuous. This paper introduces a general procedure for constructing reference metrics automatically on multicube representations of manifolds with arbitrary topologies. The method is tested here by constructing reference metrics for compact, orientable two-dimensional manifolds with genera between zero and five. These metrics are shown to satisfy the Gauss-Bonnet identity numerically to the level of truncation error (which converges toward zero as the numerical resolution is increased). These reference metrics can be made smoother and more uniform by evolving them with Ricci flow. This smoothing procedure is tested on the two-dimensional reference metrics constructed here. These smoothing evolutions (using volume-normalized Ricci flow with DeTurck gauge fixing) are all shown to produce reference metrics with constant scalar curvatures (at the level of numerical truncation error).Comment: 37 pages, 16 figures; additional introductory material added in version accepted for publicatio

    The Anisotropic Two-Point Correlation Functions of the Nonlinear Traceless Tidal Field in the Principal-Axis Frame

    Full text link
    Galaxies on the largest scales of the Universe are observed to be embedded in the filamentary cosmic web which is shaped by the nonlinear tidal field. As an efficient tool to quantitatively describe the statistics of this cosmic web, we present the anisotropic two-point correlation functions of the nonlinear traceless tidal field in the principal-axis frame, which are measured using numerical data from an N-body simulation. We show that both of the nonlinear density and traceless tidal fields are more strongly correlated along the directions perpendicular to the eigenvectors associated with the largest eigenvalues of the local tidal field. The correlation length scale of the traceless tidal field is found to be ~20 Mpc/h, which is much larger than that of the density field ~5 Mpc/h. We also provide analytic fitting formulae for the anisotropic correlation functions of the traceless tidal field, which turn out to be in excellent agreement with the numerical results. We expect that our numerical results and analytic formula are useful to disentangle cosmological information from the filamentary network of the large-scale structures.Comment: ApJ in press, accepted version, minor changes, discussion improve

    Fooling sets and rank

    Full text link
    An n×nn\times n matrix MM is called a \textit{fooling-set matrix of size nn} if its diagonal entries are nonzero and Mk,ℓMℓ,k=0M_{k,\ell} M_{\ell,k} = 0 for every k≠ℓk\ne \ell. Dietzfelbinger, Hromkovi{\v{c}}, and Schnitger (1996) showed that n \le (\mbox{rk} M)^2, regardless of over which field the rank is computed, and asked whether the exponent on \mbox{rk} M can be improved. We settle this question. In characteristic zero, we construct an infinite family of rational fooling-set matrices with size n = \binom{\mbox{rk} M+1}{2}. In nonzero characteristic, we construct an infinite family of matrices with n= (1+o(1))(\mbox{rk} M)^2.Comment: 10 pages. Now resolves the open problem also in characteristic

    Gauge drivers for the generalized harmonic Einstein equations

    Get PDF
    The generalized harmonic representation of Einstein's equations is manifestly hyperbolic for a large class of gauge conditions. Unfortunately most of the useful gauges developed over the past several decades by the numerical relativity community are incompatible with the hyperbolicity of the equations in this form. This paper presents a new method of imposing gauge conditions that preserves hyperbolicity for a much wider class of conditions, including as special cases many of the standard ones used in numerical relativity: e.g., K freezing, Gamma freezing, Bona-Massó slicing, conformal Gamma drivers, etc. Analytical and numerical results are presented which test the stability and the effectiveness of this new gauge-driver evolution system

    Petty Officer Lee Oliver, interviewed by Shavonne Brosnan

    Get PDF
    Petty Officer Lee Oliver, interviewed by Shavonne Brosnan, June 1, 2003. Text: 15 pp. transcript. Time: 00:29:57. Listen: mfc_na3248_c2361_01Ahttps://digitalcommons.library.umaine.edu/mf144/1071/thumbnail.jp
    • …
    corecore