1,863 research outputs found

    Ten years tracking the migrations of small landbirds: Lessons learned in the golden age of bio-logging

    Get PDF
    In 2007, the first miniature light-level geolocators were deployed on small landbirds, revolutionizing the study of migration. In this paper, we review studies that have used geolocators to track small landbirds with the goal of summarizing research themes and identifying remaining important gaps in understanding. We also highlight research and opportunities using 2 recently developed tracking technologies: archival GPS tags and automated radio-telemetry systems. In our review, we found that most (54%) geolocator studies focused on quantifying natural history of migration, such as identifying migration routes, nonbreeding range, and migration timing. Studies of behavioral ecology (20%) uncovered proximate drivers of movements, including en route habitat quality; that migration routes, but not timing, may be flexible in some species; and different age and sex classes show significant differences in migration strategy. Studies of the evolution of migration (9%) have illustrated that migration is a potential barrier to hybridizing species or subspecies, and some work has correlated gene polymorphisms and methylation patterns with migration behavior. Studies of migratory connectivity (11%) have shown that a moderate level of connectivity is common, although variability across and within species exists. Studies of seasonal interactions (7%) have found mixed results: in some cases, carryover effects have been identified; in other cases, carryover effects are buffered during intervening stages of the annual cycle. Archival GPS tags provide unprecedented precision in locations of nonbreeding sites and migration routes, and will continue to improve understanding of migration across large spatial scales. Automated radio-telemetry systems are revolutionizing our knowledge of migratory stopover biology, and have led to discoveries of previously unknown stopover behaviors. Together, these tracking technologies will continue to provide insight into small migratory landbird movements and contribute important information for conservation of this rapidly declining group

    Ten years tracking the migrations of small landbirds: Lessons learned in the golden age of bio-logging

    Get PDF
    In 2007, the first miniature light-level geolocators were deployed on small landbirds, revolutionizing the study of migration. In this paper, we review studies that have used geolocators to track small landbirds with the goal of summarizing research themes and identifying remaining important gaps in understanding. We also highlight research and opportunities using 2 recently developed tracking technologies: archival GPS tags and automated radio-telemetry systems. In our review, we found that most (54%) geolocator studies focused on quantifying natural history of migration, such as identifying migration routes, nonbreeding range, and migration timing. Studies of behavioral ecology (20%) uncovered proximate drivers of movements, including en route habitat quality; that migration routes, but not timing, may be flexible in some species; and different age and sex classes show significant differences in migration strategy. Studies of the evolution of migration (9%) have illustrated that migration is a potential barrier to hybridizing species or subspecies, and some work has correlated gene polymorphisms and methylation patterns with migration behavior. Studies of migratory connectivity (11%) have shown that a moderate level of connectivity is common, although variability across and within species exists. Studies of seasonal interactions (7%) have found mixed results: in some cases, carryover effects have been identified; in other cases, carryover effects are buffered during intervening stages of the annual cycle. Archival GPS tags provide unprecedented precision in locations of nonbreeding sites and migration routes, and will continue to improve understanding of migration across large spatial scales. Automated radio-telemetry systems are revolutionizing our knowledge of migratory stopover biology, and have led to discoveries of previously unknown stopover behaviors. Together, these tracking technologies will continue to provide insight into small migratory landbird movements and contribute important information for conservation of this rapidly declining group

    Phrenic nerve injury secondary to extracorporeal membrane oxygenation in pregancy: A case report

    Get PDF
    Extracorporeal membrane oxygenation (ECMO) is used to provide acute respiratory and/or hemodynamic support to patients with severe, refractory respiratory failure. Phrenic nerve injury with subsequent hemidiaphragm paralysis should be included in the differential diagnosis of pregnant women with persistent hypoxia after ECMO cannulation

    Chickadees Faced with Unpredictable Food Increase Fat Reserves but Certain Components of Their Immune Function Decline

    Get PDF
    In winter, temperate resident birds are often faced with periodic low natural food availability. This reduction or unpredictability in resource availability might then have a negative impact on immune function, given that immune system support is highly resource dependent. We investigated the balance between energetic and immune management in captive black-capped chickadees (Poecile atricapilus) by manipulating the predictability of resources. The control group received food ad lib. every day, while the experimental group received a reduced amount of food on random days and food ad lib. on all other days. We measured two key metrics of energetic management (body and fat mass) as well as a suite of immune system components. Compared with control birds, experimental birds maintained significantly higher total body and fat mass, had lower acute phase protein concentrations, and had decreased body temperature and lost more body mass during the fever response following injection with lipopolysaccharides. Interestingly, birds in both groups had similar levels of complement lysis, delayed-type hypersensitivity response (phytohemagglutinin), and primary antibody production (keyhole limpet hemocyanin). This experiment demonstrates that black-capped chickadees strategically increase their fat mass in response to decreased food availability and that this might allow the birds to maintain most of the immune system unaltered, except some of the most costly immune components

    Review essay: Anthony Howe. Byron and the Forms of Thought (Liverpool: Liverpool UP, 2013) and Carla Pomare. Byron and the Discourse of History (Farnham and Burlington: Ashgate, 2013).

    Get PDF
    This essay is a comparative review of two recently published books in Byron studies: Anthony Howe's Byron and the Forms of Thought (Liverpool: Liverpool UP, 2013) and Carla Pomare's Byron and the Discourse of History (Farnham and Burlington: Ashgate, 2013)

    Tracking Landscape-Scale Movements of Snow Buntings and Weather-Driven Changes in Flock Composition During the Temperate Winter

    Get PDF
    Nomadic movements of migratory birds are difficult to study, as the scale is beyond the capabilities of hand-held telemetry (10 s of kms) but too fine-scale for long-range tracking devices like geolocators (50–100 km accuracy). Recent widespread installation of automated telemetry receiving stations allowed us, for the first time, to quantify and test predictions about within-winter movements of a presumed nomadic species, the Snow Bunting (Pletrophenax nivalis). We deployed coded radio-transmitters on 40 individual Snow Buntings during two winters (2015-16 and 2016-17) in southern Ontario, Canada, and tracked movements over a 300 by 300 km area with 69–77 active radio-receiving stations (Motus Wildlife Tracking Network). To complement our tracking data, we also examined the influence of weather on the demographics of winter flocks at a single wintering site over 6 consecutive years (n = 9312 tagged birds). We recorded movements of 25 Snow Buntings from the deployment sites to 1–6 different radio recievers (mean 2.68 locations/bird). Birds traveled a minimum average distance of 49 km between detections (range: 3 to 490 km) in the core wintering period of Dec-Feb, and cumulative total movements ranged from 3 to 740 km (average 121 ± 46 km). In March distances between detections increased to an average of 110 km, suggesting an extended early-migration period. Overall, older birds (after-second year or older) tended to move more (higher cumulative distances traveled) than younger (first winter) birds, even during the Dec-Feb period. The long-term banding data revealed that larger, male birds were more likely to be captured in colder and snowier weather, relative to female and smaller birds, suggesting that they can withstand these conditions more easily owing to their body size. We have provided the first direct-tracking data on nomadic winter movements of Snow Buntings, and tested the hypothesis that winter weather drives flock composition at a single site. Site-specific banding data suggest that weather-related changes in flock composition could explain the nomadic, landscape-scale movements of Snow Buntings we observed by using automated telemetry. Future work should explore the importance of resource availability, competition, and predation risk as drivers of winter movements in Snow Buntings

    Chickadees faced with unpredictable food increase fat reserves but certain components of their immune function decline

    Get PDF
    In winter, temperate resident birds are often faced with periodic low natural food availability. This reduction or unpredictability in resource availability might then have a negative impact on immune function, given that immune system support is highly resource dependent. We investigated the balance between energetic and immune management in captive black-capped chickadees (Poecile atricapilus) by manipulating the predictability of resources. The control group received food ad lib. every day, while the experimental group received a reduced amount of food on random days and food ad lib. on all other days. We measured two key metrics of energetic management (body and fat mass) as well as a suite of immune system components. Compared with control birds, experimental birds maintained significantly higher total body and fat mass, had lower acute phase protein concentrations, and had decreased body temperature and lost more body mass during the fever response following injection with lipopolysaccharides. Interestingly, birds in both groups had similar levels of complement lysis, delayed-type hypersensitivity response (phytohemagglutinin), and primary antibody production (keyhole limpet hemocyanin). This experiment demonstrates that black-capped chickadees strategically increase their fat mass in response to decreased food availability and that this might allow the birds to maintain most of the immune system unaltered, except some of the most costly immune components

    RNA-Seq identifies SPGs as a ventral skeletal patterning cue in sea urchins

    Full text link
    The sea urchin larval skeleton offers a simple model for formation of developmental patterns. The calcium carbonate skeleton is secreted by primary mesenchyme cells (PMCs) in response to largely unknown patterning cues expressed by the ectoderm. To discover novel ectodermal cues, we performed an unbiased RNA-Seq-based screen and functionally tested candidates; we thereby identified several novel skeletal patterning cues. Among these, we show that SLC26a2/7 is a ventrally expressed sulfate transporter that promotes a ventral accumulation of sulfated proteoglycans, which is required for ventral PMC positioning and skeletal patterning. We show that the effects of SLC perturbation are mimicked by manipulation of either external sulfate levels or proteoglycan sulfation. These results identify novel skeletal patterning genes and demonstrate that ventral proteoglycan sulfation serves as a positional cue for sea urchin skeletal patterning
    • …
    corecore