26,657 research outputs found

    Improved table for cutting and welding

    Get PDF
    Welding table covered with parallel inverted steel angles improves metal torch cutting of various types and thicknesses

    Code Usage Analysis System (CUAS)

    Get PDF
    A set of computer programs is offered to aid a user in evaluating performance of an application program. The system provides reports of subroutine usage, program errors, and segment loading which occurred during the execution of an application program. It is presented in support of the development and validation of the space vehicle dynamics project

    Magneto-capacitance probing of the many-particle states in InAs dots

    Full text link
    We use frequency-dependent capacitance-voltage spectroscopy to measure the tunneling probability into self-assembled InAs quantum dots. Using an in-plane magnetic field of variable strength and orientation, we are able to obtain information on the quasi-particle wave functions in momentum space for 1 to 6 electrons per dot. For the lowest two energy states, we find a good agreement with Gaussian functions for a harmonic potential. The high energy orbitals exhibit signatures of anisotropic confinement and correlation effects.Comment: 3 pages, 3 figure

    Slow transport by continuous time quantum walks

    Full text link
    Continuous time quantum walks (CTQW) do not necessarily perform better than their classical counterparts, the continuous time random walks (CTRW). For one special graph, where a recent analysis showed that in a particular direction of propagation the penetration of the graph is faster by CTQWs than by CTRWs, we demonstrate that in another direction of propagation the opposite is true; In this case a CTQW initially localized at one site displays a slow transport. We furthermore show that when the CTQW's initial condition is a totally symmetric superposition of states of equivalent sites, the transport gets to be much more rapid.Comment: 5 pages, 7 figures, accepted for publication in Phys. Rev.

    Clouds, photolysis and regional tropospheric ozone budgets.

    Get PDF
    We use a three-dimensional chemical transport model to examine the shortwave radiative effects of clouds on the tropospheric ozone budget. In addition to looking at changes in global concentrations as previous studies have done, we examine changes in ozone chemical production and loss caused by clouds and how these vary in different parts of the troposphere. On a global scale, we find that clouds have a modest effect on ozone chemistry, but on a regional scale their role is much more significant, with the size of the response dependent on the region. The largest averaged changes in chemical budgets (±10–14%) are found in the marine troposphere, where cloud optical depths are high. We demonstrate that cloud effects are small on average in the middle troposphere because this is a transition region between reduction and enhancement in photolysis rates. We show that increases in boundary layer ozone due to clouds are driven by large-scale changes in downward ozone transport from higher in the troposphere rather than by decreases in in-situ ozone chemical loss rates. Increases in upper tropospheric ozone are caused by higher production rates due to backscattering of radiation and consequent increases in photolysis rates, mainly J(NO2). The global radiative effect of clouds on isoprene, through decreases of OH in the lower troposphere, is stronger than on ozone. Tropospheric isoprene lifetime increases by 7% when taking clouds into account. We compare the importance of clouds in contributing to uncertainties in the global ozone budget with the role of other radiatively-important factors. The budget is most sensitive to the overhead ozone column, while surface albedo and clouds have smaller effects. However, uncertainty in representing the spatial distribution of clouds may lead to a large sensitivity of the ozone budget components on regional scales

    Character expansion of Kac–Moody correction factors

    Get PDF
    A correction factor naturally arises in the theory of p-adic Kac–Moody groups. We expand the correction factor into a sum of irreducible characters of the underlying Kac–Moody algebra. We derive a formula for the coefficients which lie in the ring of power series with integral coefficients. In the case that the Weyl group is a universal Coxeter group, we show that the coefficients are actually polynomials
    corecore