231 research outputs found

    Using a genetic algorithm to optimize a data-limited catch rule

    Get PDF
    Many data-limited fish stocks worldwide require management advice. Simple empirical management procedures have been used to manage data-limited fisheries but do not necessarily ensure compliance with maximum sustainable yield objectives and precautionary principles. Genetic algorithms are efficient optimization procedures for which the objectives are formalized as a fitness function. This optimization can be included when testing management procedures in a management strategy evaluation. This study explored the application of a genetic algorithm to an empirical catch rule and found that this approach could substantially improve the performance of the catch rule. The optimized parameterization and the magnitude of the improvement were dependent on the specific stock, stock status, and definition of the fitness function. The genetic algorithm proved to be an efficient and automated method for tuning the catch rule and removed the need for manual intervention during the optimization process. Therefore, we conclude that the approach could also be applied to other management procedures, case-specific tuning, and even data-rich stocks. Finally, we recommend the phasing out of the current generic ICES “2 over 3” advice rule in favour of case-specific catch rules of the form tested here, although we caution that neither works well for fast-growing stocks

    The application of a management procedure to regulate the directed and bycatch fishery of South African sardine sardinops sagax

    Get PDF
    The South African sardine Sardinops sagax resource is subjected to both directed fishing that targets adult fish, and bycatch of both juvenile and adult fish taken in the directed fisheries for anchovy Engraulis capensisand round herring Etrumeus whiteheadi. Two separate TACs (Total Allowable Catch) for sardine are calculated in the management procedures considered. The first is a directed TAC linked to sardine abundance, and the second is a bycatch TAC with an “anchovy” component coupled to the anchovy population dynamics as a proportion of the anchovy TAC, plus a “round herring” component reflecting a fixed tonnage independent of round herring abundance. Requirements from the pelagic industry, such as a minimum economically viable annual directed catch and a maximum percentage decrease in the directed TAC that could be tolerated from year to year are also incorporated. The selection of a single management procedure for implementation is based on the comparison of performance statistics such as risk of severe depletion and average annual catch, which incorporate the consequences of random error in survey estimates of abundance and random fluctuations in recruitment from year to year. Sensitivity tests are carried out to ensure robustness over a range of alternative assumptions concerning resource dynamics. A description is given of the development of the management procedure for sardine thatwas implemented in 1994, and the rationale for its selection. A wide range of variants to this procedure, including those that consider alternative approaches for handling bycatch, are investigated. Performance of the management procedures considered demonstrates extreme sensitivity to the choice of the proportion of the anchovy TAC used in the sardine bycatch TAC calculation. A lack of robustness of the selected management procedure to possible bias in estimates of spawner biomass from hydroacoustic surveys, and poor precision of recruit survey estimatesare argued as justification for adopting a conservative approach for managing sardine

    Exploring a relative harvest rate strategy for moderately data-limited fisheries management

    Get PDF
    Moderately data-limited fisheries can be managed with simple empirical management procedures without analytical stock assessments. Often, control rules adjust advised catches by the trend of an abundance index. We explored an alternative approach where a relative harvest rate, defined by the catch relative to a biomass index, is used and the target level derived from analysing historical catch length data. This harvest rate rule was tested generically with management strategy evaluation. A genetic algorithm was deployed as an optimisation procedure to tune the parameters of the control rule to meet maximum sustainable yield and precautionary management objectives. Results indicated that this method could outperform trend-based strategies, particularly when optimised, achieving higher long-term yields while remaining precautionary. However, optimum harvest rate levels can be narrow and challenging to find because they depend on historical exploitation and life history characteristics. Misspecification of target levels can have a detrimental impact on management. Nevertheless, harvest rates appear to be a suitable management option for moderately data-limited resources, and their application has modest data requirements. Harvest rate strategies are especially suitable for stocks for which case-specific analyses can be conducted

    Risk equivalence in data-limited and data-rich fisheries management: An example based on the ICES advice framework

    Get PDF
    Fisheries management needs to ensure that resources are exploited sustainably, and the risk of depletion is at an acceptable level. However, often uncertainty about resource dynamics exists, and data availability may differ substantially between fish stocks. This situation can be addressed through tiered systems, where tiers represent different data limitations, and tier-specific stock assessment methods are defined, aiming for risk equivalence across tiers. As case studies, we selected stocks of European plaice, Atlantic cod and Atlantic herring, where advice is provided by the International Council for the Exploration of the Sea (ICES). We conducted a closed-loop simulation to compare risk equivalence between the data-rich ICES MSY rule, based on a quantitative stock assessment, and the revised data-limited empirical management procedures of the ICES advice framework. The simulations indicated that the data-limited approaches were precautionary and did not lead to a higher risk of depletion than the data-rich approach. Although the catch based on generic data-limited approaches was lower, stock-specific optimisation improved management performance with catch levels comparable with the data-rich approach. Furthermore, the simulation indicated the ICES MSY rule can fail to meet management objectives due to increased depletion risk when management reference points are set suboptimally. We conclude that the recent revisions of the ICES system explicitly account for risk equivalence for data-limited fisheries management and are a major step forward. Finally, we advocate further consideration of simple empirical management procedures irrespective of data limitations due to their ability to meet fisheries management objectives with greater simplicity

    Shaping sustainable harvest boundaries for marine populations despite estimation bias

    Get PDF
    Biased estimates of population status are a pervasive conservation problem. This problem has plagued assessments of commercial exploitation of marine species and can threaten the sustainability of both populations and fisheries. We develop a computer-intensive approach to minimize adverse effects of persistent estimation bias in assessments by optimizing operational harvest measures (harvest control rules) with closed-loop simulation of resource-management feedback systems: management strategy evaluation. Using saithe (Pollachius virens), a bottom water, apex predator in the North Sea, as a real-world case study, we illustrate the approach by first diagnosing robustness of the existing harvest control rule and then optimizing it through propagation of biases (overestimated stock abundance and underestimated fishing pressure) along with select process and observation uncertainties. Analyses showed that severe biases lead to overly optimistic catch limits and then progressively magnify the amplitude of catch fluctuation, thereby posing unacceptably high overharvest risks. Consistent performance of management strategies to conserve the resource can be achieved by developing more robust control rules. These rules explicitly account for estimation bias through a computational grid search for a set of control parameters (threshold abundance that triggers management action, Btrigger, and target exploitation rate, Ftarget) that maximize yield while keeping stock abundance above a precautionary level. When the biases become too severe, optimized control parameters—for saithe, raising Btrigger and lowering Ftarget—would safeguard against a overharvest risk (<3.5% probability of stock depletion) and provide short-term stability in catch limit (<20% year-to-year variation), thereby minimizing disruption to fishing communities. The precautionary approach to fine-tuning adaptive risk management through management strategy evaluation offers a powerful tool to better shape sustainable harvest boundaries for exploited resource populations when estimation bias persists. By explicitly accounting for emergent sources of uncertainty, our proposed approach ensures effective conservation and sustainable exploitation of living marine resources even under profound uncertainty
    • …
    corecore