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Many data-limited fish stocks worldwide require management advice. Simple empirical management procedures have been used to manage
data-limited fisheries but do not necessarily ensure compliance with maximum sustainable yield objectives and precautionary principles.
Genetic algorithms are efficient optimization procedures for which the objectives are formalized as a fitness function. This optimization
can be included when testing management procedures in a management strategy evaluation. This study explored the application of a genetic
algorithm to an empirical catch rule and found that this approach could substantially improve the performance of the catch rule. The opti-
mized parameterization and the magnitude of the improvement were dependent on the specific stock, stock status, and definition of the
fitness function. The genetic algorithm proved to be an efficient and automated method for tuning the catch rule and removed the need for
manual intervention during the optimization process. Therefore, we conclude that the approach could also be applied to other management
procedures, case-specific tuning, and even data-rich stocks. Finally, we recommend the phasing out of the current generic ICES “2 over 3”
advice rule in favour of case-specific catch rules of the form tested here, although we caution that neither works well for fast-growing stocks.
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Introduction
The majority of the world’s fish stocks are data-limited, and ana-

lytical stock assessments do not exist (Rosenberg et al., 2014).

Nevertheless, fisheries scientists and managers are often requested

by stakeholders to advise on fishing opportunities in order to en-

sure the sustainability of fisheries activities.

ICES provides advice on fishing opportunities for many fish

stocks in the Northeast Atlantic. For this purpose, fish stocks are

classified into six categories, depending on the availability of data

and the applicability of assessment methods (ICES, 2012, 2019a).

Data-rich stocks fall into the highest category (category 1). For

these stocks, analytical stock assessments offer quantitative infor-

mation about stock metrics, and ICES provides advice based on a

framework that includes considerations of the precautionary ap-

proach (Garcia, 1996) for biological risk and target fishing levels

that are defined by reference points following the maximum sus-

tainable yield (MSY) principle (ICES, 2019a). The lowest category

is category 6 and includes data-poor bycatch stocks with negligi-

ble landings. In between are data-limited stocks, and for these,

ICES bases its advice on a precautionary approach (ICES, 2012).

ICES category 3 data-limited stocks are stocks for which

survey-based assessments indicate trends in stock dynamics

(ICES, 2012). Even though some survey indices exist for these

stocks, it is not always possible to apply simple stock assessment

methods, such as biomass dynamic models or simplified inte-

grated models (e.g. extended simple stock synthesis; Cope et al.,

2015). This might be because of short time-series, conflicting

signals from the catch, catch per unit effort, survey and length

data, lack of contrast in these data, or model convergence issues.

Management procedures based on empirical rules are an alterna-

tive and can sometimes perform at least as well as those based on

analytical methods (Carruthers et al., 2014; Geromont and

Butterworth, 2015). For category 3 stocks, ICES typically applies

a “2 over 3” rule to an index of abundance (the average of the last
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two values divided by the average of the three values preceding

those) and has introduced MSY principles for stock status evalua-

tions based on MSY proxy methods (ICES, 2018b). However, this

approach considers solely the application of a precautionary

buffer to reduce the catch advice based on the “2 over 3” rule in

case of a non-favourable stock status and does not include any

MSY targets. It is therefore not explicitly aligned towards MSY.

Fischer et al. (2020) deployed a management strategy evalua-

tion (MSE, Smith, 1994; Punt et al., 2016) approach to simulation

test an alternative catch rule that includes an MSY target, which is

based on an empirical rule of the form:

Ayþ1 ¼ Cy�1 r f b: (1)

This harvest control rule (the rfb-rule) sets the catch advice for

the following year (Ayþ1) on the recently observed catch (Cy�1)

multiplied by three components; a biomass trend r, an exploita-

tion proxy f, and a biomass safeguard b. Component r represents

the recent stock trend derived from a biomass index, f is calcu-

lated by comparing the recent mean length in the catch to a

length-based proxy for FMSY, and b reduces the catch when the

biomass index falls below a threshold.

The rfb-rule is currently being considered by ICES (ICES,

2017d, 2018c, 2019b) as a potential successor for assessing cate-

gory 3 data-limited stocks. The simulations of Fischer et al.

(2020) showed that its performance is crucially dependent on the

life-history of the stock, and in particular on the von Bertalanffy

growth parameter k. The rfb-rule performed reasonably well for

stocks with k � 0:32 year�1 by keeping these stocks at or above

BMSY, but very poorly for stocks with higher k (fast-growing and

small pelagic stocks), resulting in increased risks of stock collapses

in these cases.

In an MSE context, the term tuning describes the process of

adjusting the control parameters of a management procedure to

improve performance statistics for the purpose of meeting spe-

cific management objectives in a simulation (tRFMO, 2018). This

concept has also been considered at the International Whaling

Commission to adapt management procedures to balance man-

agement objectives such as risk, stock status, and aboriginal sub-

sistence whaling needs (Givens et al., 1999). Fischer et al. (2020)

made some attempts to improve the performance of the rfb-rule

by manually tuning the rule by the addition of multipliers (to

change the target level) and catch constraints (to limit catch vari-

ability). The results showed that the rfb-rule was mainly domi-

nated by the stock trend (component r), whereas the remaining

components had less influence on the newly advised catches. The

logical course of action is to apply weights to the three compo-

nents in order to reduce or increase their influence. The applica-

tion of weights should not just be a process of adding arbitrary

correction factors but implemented with consistent and logical

rules. Trying to manually modify a single component of the

rfb-rule or a limited combination of components to improve per-

formance might be feasible with a grid search; however, such a

manual optimization task is an onerous activity and decisions are

potentially arbitrary. Givens et al. (1999) note that depending on

the way optimizations and approximations are specified, out-

comes might give preference to different approaches, e.g. by fo-

cusing only on specific management goals. If the components are

going to be tuned on a case-specific basis and their interactions

considered in a multi-dimensional search, then there are an al-

most infinite number of scenarios and potentially confounding

results between parameters, which means traditional approaches

are impractical.

In the absence of predefined and clearly articulated manage-

ment objectives, the results of such a tuning exercise must be

carefully examined, and this can easily lead to a time-consuming

activity. For example, trade-offs between opposing objectives

need to be considered, such as maximizing catch and biomass or

reducing depletion risk and catch variability. Moreover, trust is a

crucial element and stakeholders will need to agree to the proce-

dure and accept outputs and revisions in the light of new devel-

opments. Therefore, the application of an automated or semi-

automated optimization procedure without the need for manual

intervention is desirable. For this approach, the objectives of the

optimization process must be precisely defined and be formalized

as an objective function.

In this study, we explore the use of a genetic algorithm (GA) as

an optimization method. Genetic algorithms belong to the more

general class of evolutionary algorithms which are inspired by the

principles of biological evolution (Darwin, 1859) and can be used

as an optimization procedure. In a GA, the functional behaviour

of genetic operators is mimicked in order to create variability in a

population, which is then subjected to selection in a competitive

environment (Holland, 1992).

The GA approach was already well developed in the 1970s but

did not gain much attraction in the scientific community initially

(Holland, 1992). However, with the development of faster and

more advanced computers, its application became more feasible.

To date, GAs have been applied to optimization problems in vari-

ous scientific fields, including the design of integrated circuits,

communication networks, and stock market portfolios (Holland,

1992). In fisheries science, GAs have, for example, been applied to

the optimization of bioeconomic models (Mardle et al., 2000), or

fitting stock-recruitment models (Chen et al., 2000) and growth

functions (Taylor and Mildenberger, 2017).

Numerous other optimization methods exist; however, not all

of them are equally applicable to specific optimization problems.

We chose the GA approach because it is a flexible optimization

approach, allows the inclusion of computing-intensive fitness

functions, and has been shown to perform well for various opti-

mizations. It is also able to consider many possible solutions si-

multaneously within one generation, and it is, therefore, less

prone to converging on local optima (Chen et al., 2000).

The genetic algorithm can be applied to the optimization of

management procedures that include harvest control rules such

as the rfb-rule. For a control rule to be optimized, there is a need

for it to be adaptable. This adaptability can be achieved by mak-

ing the existing components of the rule more flexible (e.g. by

changing the definition of a component) or through the inclusion

of additional parameters (e.g. weighting components or a multi-

plier) that can be used for tuning. An individual of the popula-

tion in the genetic algorithm is defined by its genetic material

(the genotype). In the context of a control rule, parameters could

be considered as genes. All parameters together form the geno-

type of an individual. Such a genotype must be translated in order

to obtain observable traits (the phenotype). This translation cor-

responds to running an MSE projection with the parameters of

the control rule, and summary statistics could then characterize

its phenotype.

Figure 1 illustrates the principles of a genetic algorithm.

The initial population (the first generation) in the genetic al-

gorithm consists of many individuals, each with a different set
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of parameters. This population would include the default pa-

rameterization of the rule, as well as randomly chosen param-

eterizations. For the population to evolve, the fitness of each

individual must be evaluated with a fitness function, e.g. by

comparing summary statistics for predefined targets or thresh-

olds. Prior to creating the second generation, natural selection

is applied to the initial generation, and only the fittest indi-

viduals survive and form a reproductive population. This re-

productive population is the basis for the next generation and

their genes (control rule parameters) are passed on to the

next generation; however, natural variability is introduced

through two genetic operators: crossover and mutation. The

individuals in the new generation are generated by combining

the parameters of two parent-individuals (crossover), as well

as introducing random changes to the parameters (mutation).

Furthermore, an elitist strategy allows the survival of some of

the individuals with the highest fitness values. Elitism is useful

to ensure that the best performing parameterizations do not

disappear, and that there is no deterioration in the perfor-

mance over the generations. This process is then repeated for

every subsequent generation until convergence criteria are

reached, and the optimization terminates.

In the present study, we explore the application of the genetic

algorithm to the optimization problem of the data-limited catch

rule from Equation (1). By doing so, we aim to improve the per-

formance of the generic catch rule, and, more generally, evaluate

whether the approach can be used for higher-k stocks for which

the default catch rule parameterization showed poor performance

(Fischer et al., 2020). We also compare the results of this catch

rule, both its default and optimized settings, to the current ICES

“2 over 3” advice rule for ICES category 3 data-limited stocks.

Methods
Operating models
The 29 stocks in Fischer et al. (2020) were used for the operating

models and these covered a wide range of life-history traits
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Figure 1. Conceptual representation of the genetic algorithm as an optimization procedure for a management procedure.
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(the stocks and their life-history parameters are listed in

Supplementary Table S1). Age-structured operating models were

created using the FLR (Kell et al., 2007) package FLife and were

conditioned using life-history parameters.

Two fishing histories were created starting from an unfished

state for a period of 100 years (y ¼ �99; . . . ; 0, enough for

slower-growing stocks to respond to changes in exploitation) and

with 500 simulation replicates (Figure 2). The approach of using

alternative fishing histories was chosen to cover different possible

exploitation patterns, including a pattern of overexploitation

against which the default rfb-rule was already tested, and as a way

to compare the catch rule performance depending on the exploi-

tation history. The baseline was the "one-way" fishing history

from Fischer et al. (2020), in which stocks were fished for 75 years

at 0:5FMSY, and then the fishing mortality was increased exponen-

tially to 0:8Fcrash over the following 25 years, where Fcrash is de-

fined as the lowest fishing mortality that causes the stock to

collapse in equilibrium. This fishing history meant that the stocks

were highly depleted and declining at the end of the fishing

history. An alternative fishing history ("random") was generated

with random fishing trajectories. This was achieved by defining

the fishing mortality at three points in time; starting from an

unfished state (Fy¼�99 ¼ 0), setting fishing mortality after 50 and

100 years by drawing from independent uniform distributions

[Fy¼�50 � Uð0; FcrashÞ and Fy¼0 � Uð0; FcrashÞ], and using a sim-

ulation replicate-specific linear interpolation for the intermediate

years. This random fishing history covered a wide range of fishing

patterns, including increasing, stable, and decreasing fishing

mortality, and combinations thereof (see Figure 2).

Management procedure
After the 100-year fishing history, a management procedure based

on a modified version of the rfb-rule defined in Equation (1) was

implemented for 50 years (years 1 to 50). In order to make the

rule more flexible, additional elements were introduced:

Ayþ1 ¼ Cy�1 rer f ef beb x: (2)

The newly introduced exponents er, ef, and eb allowed the

weighting of the three components r (biomass trend), f (exploita-

tion proxy), and b (biomass safeguard). The multiplier x worked by

modifying the advised catch, e.g. by increasing the catch (less pre-

caution) or decreasing it (more precaution). The components of

the rfb-rule are multiplicative; consequently, the multiplier can be

considered as working on the total catch advice or any individual

component (e.g. by changing the target of the f-component).

Setting er ¼ ef ¼ eb ¼ 1 corresponds to the default rfb-rule param-

eterization without weighting, ej < 1 reduces the influence of any

component j (r, f or b) and makes it less reactive to the underlying

data, with ej ¼ 0 removing it altogether, and ej > 1 giving compo-

nent j more weight by making it more reactive. The r component

reflects the trend in a biomass index time series and defaults to the

average of the last two years’ values divided by the average of the

three preceding years’ values, which corresponds to the current im-

plementation of the “2 over 3” rule within ICES. Component r was

adapted so that it corresponded to an average of n1 years divided

by n2 years of the biomass index (I) and the most recent year was

defined as an offset n0 to the intermediate (assessment) year y:

r ¼
Py�n0

i¼y�n0�n1þ1ðIi=n1ÞPy�n0–n1

i¼y�n0�n1þ1ðIi=n1Þ
: (3)

Components f and b were kept unchanged:

f ¼ Ly�1

LF¼M

; (4)

where Ly�1 is the mean catch length above the length of first
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Figure 2. Comparison of the two fishing histories in the operating models, shown here for pollack. The black curves represent the 500
simulation replicates and the dashed horizontal lines indicate FMSY and BMSY.
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capture and LF¼M a theoretical MSY reference length assuming

M=k ¼ 1:5 and F¼M based on Beverton and Holt (1957) and

proposed by Jardim et al. (2015); and

b ¼ min 1;
Iy�n0

Itrigger

� �
; (5)

with Itrigger ¼ 1:4Iloss, where Iloss is the lowest observed biomass

index value in the historical fishing period. This relationship is an

analogy to the rationale for ICES data-rich stocks, where, in the

absence of better knowledge, a trigger biomass level (used as

the breakpoint of a hockey-stick harvest control rule) can be set

relative to a biomass limit reference point, which corresponds to

the lowest observed biomass (ICES, 2017a, b).

The final parameter of this flexible rfb-rule was the frequency

of advice (v), which defines the number of years the catch advice

is kept constant before applying the rule again. The default

was v¼ 2 years, i.e. biennial advice as is standard for category 3

data-limited stocks within ICES (ICES, 2012, 2018a).

Errors were assumed to be log-normal, and observation uncer-

tainty was applied on top of the age-aggregated biomass and

length indices with SD ¼ 0.2. Variability was implemented for

recruitment, assuming a Beverton–Holt stock-recruitment model

with rR ¼ 0:6. The generation of the operating models and the

formulation and quantification of uncertainty were explored in

detail previously, and considered appropriate (supplementary

material of Fischer et al., 2020).

Recruitment variability and random observation errors were

compiled prior to running the MSE and were identical for all

stocks and runs; therefore, the results of a projection with a

specific catch rule parameterization were fully reproducible and

comparable.

Summary statistics
Five summary statistics were selected to evaluate the performance

of the rfb-rule, which were computed over the entire 50-year pro-

jection period and all 500 simulation replicates. These were the

medians of SSB=BMSY; F=FMSY; Catch=MSY, and ICV (inter-an-

nual catch variability, defined as jðCy � Cy�vÞ=Cy�v j, where Cy is

the catch for the year y and v the frequency of advice, e.g. v¼ 2

for a biennial advice) and the Blim risk [defined as the number of

times SSB is below Blim over all years and replicates, expressed as

a proportion, with Blim defined as the SSB where recruitment is

impaired by 30%; see Fischer et al. (2020) for detailed descrip-

tions of these metrics].

Optimization procedure
The rfb-rule was optimized by altering its parameters with a ge-

netic algorithm as an optimization procedure. The eight parame-

ters of the rfb-rule (n0, n1, n2, er, ef, eb, v, x) described above were

included in the optimization procedure, and a specific set of these

eight parameters was seen as one individual in one generation of

the algorithm. The population size was set to 100, i.e. in every

generation, 100 parameter sets were simulated. The first genera-

tion contained rfb-rule parameter suggestions, which included (i)

the default rfb-rule, (ii) the default rfb-rule with an annual catch

advice (i.e. v¼ 1), (iii) using the most recent data without lags

(i.e. n0 ¼ 0), (iv) constant catch, and (v) combinations where

one or more of the rfb-rule components were turned off (i.e. ej ¼
0 for one or more components, j), and comprised a total of 35

suggestions (see Supplementary Table S2). The remaining 65

individuals of the first generation were created randomly.

The simulation for each individual included running a full-

feedback MSE projection over the 50-year projection period and

500 replicates. Subsequently, the fitness of the 100 individuals was

evaluated against a predefined fitness function. The fitness func-

tion, /, summarizes the output of one MSE projection and

assigns a numerical value to its fitness. The summary statistics de-

fined above were used as the basis for the fitness function defini-

tion. The rfb-rule investigated here is designed to provide

management in compliance with MSY. Therefore, the deviation

of SSB, , and catch from their MSY reference point can be used:

/SSB ¼ �j
SSB

BMSY

� 1j; (6)

/F ¼ �j
F

FMSY

� 1j and (7)

/Catch ¼ �j
Catch

MSY
� 1j: (8)

Absolute values are used here because both an under and over-

shooting of the MSY reference points is considered unfavourable.

The remaining two summary statistics can be used similarly be-

cause both risk and ICV should be reduced:

/risk ¼ �Blim risk; and (9)

/ICV ¼ �ICV: (10)

SSB=BMSY; F=FMSY; Catch=MSY, and ICV in Equations (6), (7),

(8), and (10) are, as defined above, the medians over the 50 years

and 500 replicates per simulation, i.e. one value per simulation.

Blim risk in Equation (9) is a single value per simulation.

The genetic algorithm worked by evaluating the fitness func-

tion, and the optimization procedure progressed by maximizing

the value of this fitness function. In this case, the summary statis-

tics used in the fitness function indicated better performance

when their absolute values were smaller, i.e. a smaller deviation

from their target. To account for this, their absolute values were

made negative so that the maximization deployed in the optimi-

zation procedure aimed at increasing values for the fitness

evaluations.

The final fitness function could then be any one of the

Equations (6–10) or the sum of an arbitrary combination thereof.

Several fitness functions were explored, and the default fitness

function used was:

/SSBþCatchþriskþICV ¼ /SSB þ /Catch þ /risk þ /ICV: (11)

After running the 100 MSE projections (each one correspond-

ing to an individual) in one generation of the genetic algorithm

and calculating the fitness of each individual, natural selection

was applied to generate the reproductive population (Figure 1).

The probability of selecting an individual was proportional to its

fitness. In the creation of the next generation, natural variability

was applied to the parameters. Individuals were randomly

grouped into reproductive pairs. In these pairs, crossover oc-

curred with a probability of p¼ 0.8 and meant that an offspring

individual with eight parameters was generated as a combination
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of the parameters of two parent individuals. Mutation introduced

random changes to the parameters by drawing from a uniform

distribution and had a probability of p¼ 0.1. Elitism was set to

5%, i.e. within each generation, the individuals were ranked by

fitness and the top 5% were passed into the next generation with-

out changes. This process was repeated over many generations. A

termination occurred if either (i) a maximum of 100 generations

was reached or (ii) due to stationarity if no improvement in the

fitness was observed within 10 consecutive generations. The ge-

netic algorithm was run with the R package GA (Scrucca, 2013).

Current ICES management
The generic advice rule for category 3 data-limited stocks, as cur-

rently applied by ICES (2012, 2019a), was simulated. This served

as a benchmark against which the new rfb-rule (and its optimized

parameterizations) could be compared, and also offered insights

into the performance of the current rule. The catch advice is bien-

nial and based on the “2 over 3” rule (see Fischer et al., 2020),

which is essentially Equation (2) where Cy�1 is set to the previ-

ously advised catch Ay�1, r is the default of Equation (3) with

n0 ¼ 1; n1 ¼ 2, and n2 ¼ 3, the weights are set as follows: er ¼ 1,

ef ¼ 0, eb ¼ 0, the multiplier set to x¼ 1, and a precautionary

buffer (bPA) is introduced, i.e.

Ayþ1 ¼ Ay�1

Py�1
i¼y�2ðIi=2ÞPy�3
i¼y�5ðIi=3Þ

bPA: (12)

In addition to that, an uncertainty cap limits the change in the

catch advice to no more than 20%. The precautionary buffer

reduces the catch advice if the stock is estimated to be in an

unfavourable condition based on a comparison with proxy refer-

ence points estimated, e.g. by the surplus production model in

continuous time (SPiCT, Pedersen and Berg, 2017) or length-

based analyses. In the current ICES system, if such an assessment

exists, the results are either used solely for informing on the stock

status, or the “2 over 3” rule is applied on the biomass estimates

from this assessment. Stock status is evaluated as positive if both

F � FMSY and SSB � 0:5BMSY, and negative if either or both

conditions are not met (ICES, 2019a). If the status is negative, the

catch advice is reduced by 20%; however, once the buffer is

applied, it can only be considered again 3 years later. This param-

eterization of the precautionary buffer is based on an MSE

evaluation conducted by (ICES, 2017c) in which various sizes and

intervals for the application of the precautionary buffer were

tested depending on the stock status evaluated by the SPiCT

assessments. This evaluation was conducted for 12 fish stocks and

three initial exploitation levels (0:5FMSY; FMSY; 2FMSY), and a to-

tal of 36 million SPiCT assessments were run.

In the present study, the stock status evaluation was approxi-

mated based on the pooled sensitivity of these SPiCT assessments

run by (ICES, 2017c). This yielded a true positive rate of 0.99 (de-

tection of a positive stock status, as defined above, by the model

when the true state in the operating model was positive) and a

true negative rate of 0.42 (detection of a negative stock status by

the model when the true state in the operating model was nega-

tive). The stock status approximation was implemented here by

extracting the stock status from the operating model and adding

uncertainty to this evaluation by drawing from a binomial distri-

bution Bð1; pÞ, where p is the success rate (0.99 for positive and

0.42 for negative stock status), independently for each simulation

replicate and year. This approach was a simple approximation ap-

propriate for the analyses here; however, it has the caveat that the

identification of correct stock status by SPiCT was assumed to be

a random process defined by the success rate, irrespective of other

possible factors influencing performance. More complex model

approximations could be considered in future analyses.

Scenarios
The scenarios explored were:

(1) Fitness function explorations. Pollack (pol, Pollachius polla-

chius) was chosen as a typical example stock (k ¼ 0.19

year�1, a medium value within the range for which the rfb-

rule performed reasonably;) Fischer et al. (2020) to test the

influence of different formulations of the fitness function

and fishing histories.

(2) Catch advice interval. The impact of the interval for which

the catch advice is set was explored for the example pollack

stock.

(3) Stock-specific optimization. The genetic algorithm was ap-

plied independently to all 29 stocks using the fitness function

formulation selected in the first step in order to test the ap-

proach for different life-histories.

(4) Stock groups. The stocks were split into three groups using

their von Bertalanffy k value (low: 0:08 � k � 0:19; me-

dium: 0:20 � k � 0:32; high: 0:32 � k � 1; unit for k:

year�1), based on the results of ICES (2018c) and Fischer

et al. (2020). Here, the stocks within a group were combined,

and identical catch rule parameters applied and projected

forward simultaneously. The fitness function was defined as

the sum of the fitness values per stock. This scenario was

used to explore the behaviour of the optimization procedure

when applied to a group of life-histories, e.g. fast-growing

compared to long-lived species, and to test whether a generic

catch rule parameterization could be applied. [Note: there

was an overlap at k ¼ 0:32 year�1 between the medium and

high groups because turbot (tur, Scopthalmus maximus)

belonged to the group for which the rfb-rule worked,

whereas it did not work for tub gurnard (gut, Chelidonichtys

lucerna).]

(5) Current ICES rule. The performance of the rfb-rule and its

optimized parameterizations were compared to the ICES “2

over 3” advice rule for category 3 data-limited stocks as a di-

rect comparison of the new rule with the currently applied

advice rule.

Results
Fitness function explorations
For the fitness function explorations with pollack, the genetic al-

gorithm terminated after 16 to 27 generations (well before the

100-generation cut-off), depending on the fitness function defini-

tion and fishing history. The optimized rfb-rule parameters

depended on the specific fitness function (Table 1). For five of

the six runs, the “2 over 3” ratio of the biomass index was kept,

whereas the offset between the last biomass index year and the

intermediate year was always removed (n0 ¼ 0). In general, the

weighting of component r of the rfb-rule did not change substan-

tially; however, components f and b were down-weighted, and the

advice interval v and the multiplier x remained at or around their
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default values. In the one-way fishing history, the median of the

SSB increased after the implementation of the default rfb-rule

from its depleted state, but overshot BMSY, peaked at just below

2BMSY, and then equilibrated at around 1:5BMSY at the end of the

50-year projection period (Figure 3a). All tested fitness functions

resulted in median SSB trajectories without the initial SSB peak

and terminated closer to BMSY. Despite exhibiting similar SSB

trajectories, trade-offs between the summary statistics were evi-

dent (Figure 3c). The fitness functions with only a single compo-

nent (/Catch; /SSB) led to parameter combinations which resulted

in values of the corresponding summary statistic being close to

their targets; however, the remaining summary statistics did not

always improve for /SSB (although it did for /Catch). Adding ad-

ditional components to the fitness function alleviated this and

Table 1. Default and optimized catch rule parameters

Operating model Genetic algorithm Catch rule parameters

Fishing
history Stock k (year�1)

Fitness
function /

Gener-
ations

Fitness
improvement
(%) n0 n1 n2 er ef eb v x

Default
parameters

One-way 1 2 3 1 1 1 2 1
Random 1 2 3 1 1 1 2 1

Fitness function
explorations

One-way pol 0.19 /SSB 27 100 0 2 3 1.2 0.7 0.8 3 1.06
One-way pol 0.19 /Catch 19 100 0 2 3 1.0 0.4 0.4 2 1.00
One-way pol 0.19 /SSBþriskþICV 16 48 0 2 3 1.0 0.5 0.5 2 1.03
One-way pol 0.19 /SSBþCatchþriskþICV 18 64 0 2 3 0.9 0.4 0.5 2 1.03
One-way pol 0.19 /SSBþFþCatchþriskþICV 26 72 0 2 2 1.1 0.4 0.3 2 1.01
Random pol 0.19 /SSBþCatchþriskþICV 26 57 0 2 3 0.7 0.3 0.4 2 1.02

Stock-specific
optimization

One-way ang3 0.08 /SSBþCatchþriskþICV 25 70 0 3 3 1.3 0.4 0.7 3 1.06
One-way rjc2 0.09 /SSBþCatchþriskþICV 23 66 0 3 4 1.2 0.7 0.6 3 1.02
One-way smn 0.11 /SSBþCatchþriskþICV 21 71 0 2 3 0.8 0.2 0.3 2 1.02
One-way wlf 0.11 /SSBþCatchþriskþICV 23 83 0 2 3 1.0 0.5 0.3 2 1.07
One-way meg 0.12 /SSBþCatchþriskþICV 24 89 0 2 3 1.0 0.4 0.7 2 1.24
One-way lin 0.14 /SSBþCatchþriskþICV 23 60 0 3 3 1.2 0.6 0.5 3 1.01
One-way rjc 0.14 /SSBþCatchþriskþICV 35 60 0 2 3 1.1 0.6 0.4 2 1.00
One-way syc 0.15 /SSBþCatchþriskþICV 34 65 0 3 3 0.9 0.3 0.3 2 1.01
One-way sdv 0.15 /SSBþCatchþriskþICV 14 62 1 2 3 1.0 0.1 0.1 2 0.98
One-way ang 0.18 /SSBþCatchþriskþICV 19 57 0 2 3 0.9 0.3 0.3 2 0.99
One-way ang2 0.18 /SSBþCatchþriskþICV 24 57 0 2 3 0.9 0.5 0.6 2 1.02
One-way pol 0.19 /SSBþCatchþriskþICV 18 64 0 2 3 0.9 0.4 0.5 2 1.03
One-way had 0.20 /SSBþCatchþriskþICV 35 77 0 2 3 0.9 0.3 0.8 2 1.08
One-way nep 0.20 /SSBþCatchþriskþICV 11 76 1 2 3 1.0 0.0 0.3 1 1.00
One-way mut 0.21 /SSBþCatchþriskþICV 20 75 0 2 3 0.8 0.4 0.6 2 1.10
One-way sbb 0.22 /SSBþCatchþriskþICV 21 59 0 2 2 0.9 0.5 0.7 2 1.06
One-way ple 0.23 /SSBþCatchþriskþICV 28 75 0 2 2 0.9 0.4 0.4 2 1.07
One-way syc2 0.23 /SSBþCatchþriskþICV 30 68 1 2 3 1.0 0.2 0.2 2 1.01
One-way arg 0.23 /SSBþCatchþriskþICV 14 64 0 2 3 0.9 0.2 0.2 2 1.00
One-way tur 0.32 /SSBþCatchþriskþICV 32 75 0 2 2 0.9 0.4 0.4 2 1.09
One-way gut 0.32 /SSBþCatchþriskþICV 22 51 0 2 2 0.8 0.3 0.6 2 1.02
One-way whg 0.38 /SSBþCatchþriskþICV 27 58 0 2 3 0.6 0.6 0.7 2 1.00
One-way bll 0.38 /SSBþCatchþriskþICV 28 52 0 2 3 0.7 0.4 0.9 3 1.00
One-way lem 0.42 /SSBþCatchþriskþICV 28 50 0 3 3 0.6 0.3 0.8 3 1.03
One-way ane 0.44 /SSBþCatchþriskþICV 14 42 0 2 3 0.8 0.8 0.7 2 1.01
One-way jnd 0.47 /SSBþCatchþriskþICV 25 55 0 3 3 0.3 0.4 1.4 3 0.94
One-way sar 0.60 /SSBþCatchþriskþICV 25 48 0 2 3 0.6 0.8 1.3 3 0.96
One-way her 0.61 /SSBþCatchþriskþICV 24 51 0 2 3 0.4 0.5 1.1 2 0.96
One-way san 1.00 /SSBþCatchþriskþICV 25 45 0 2 2 0.3 0.5 1.1 2 1.00

Stock groups
optimization

One-way Low-k 0.08–0.19 /SSBþCatchþriskþICV 15 68 1 2 3 1.0 0.0 0.2 2 1.00
One-way Medium-k 0.20–0.32 /SSBþCatchþriskþICV 19 67 0 2 3 0.8 0.2 0.8 2 1.07
One-way High-k 0.32–1.00 /SSBþCatchþriskþICV 34 28 0 3 3 0.6 0.4 1.0 3 1.00

Shown are the results for the fitness function explorations with the pollack stock, the stock-specific optimization for all 29 stocks, and the optimization where
stocks are split into three groups based on k. See Equations (2) and (3) for definitions of the parameters.
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improved the respective summary statistics. The progress of the

optimization process with a genetic algorithm is visualized in

Figure 3b for the one-way fishing history with the fitness function

including SSB, catch, risk, and ICV. The best fitness values in

each generation (with a population size of 100) converged

quickly, and the algorithm terminated after 18 generations due to

stationarity, because no further improvement within 10 consecu-

tive generations was made.

For the alternative historical fishing history (random), only the

/SSBþCatchþriskþICV fitness function was explored, and improved

the performance of the rfb-rule, as seen for the stock trajectories

and all summary statistics (Figure 3a and c). The SSB, and catch

moved closer to the MSY reference points and reached this state

earlier, and risk and ICV were reduced. This fitness formulation

(/SSBþCatchþriskþICV) was selected for further analysis because it of-

fered a balance between achieving MSY (for both SSB and catch),

reducing risk and minimizing inter-annual variations in the catch.

Ideally, a decision on which components to include in the fitness

formulation would be closely aligned to management objectives.

Catch advice interval
The impact of the frequency of setting the catch advice was ex-

plored for pollack in the one-way fishing history by fixing the in-

terval and then optimizing the rfb-rule for the remaining

parameters with the genetic algorithm and using

/SSBþCatchþriskþICV. The maximum fitness was obtained with a bi-

ennial catch advice. When setting an annual or triennial catch ad-

vice, the fitness deteriorated by 20 and 12%, respectively when

compared to biennial catch advice (results not shown).

Stock-specific optimization
The stock-specific optimization of the rfb-rule led to stock-

specific catch rule parameters and substantially improved fitness

of the rule for all stocks (Table 1). The components of the fitness

function are summarized in Figure 4a. For the low- to medium-k

stocks (k � 0:32 year�1), SSB, F, and catch summary statistics

were moved close to their MSY reference points. This meant a re-

duction in SSB for many stocks compared to the default rfb-rule,

which is reflected in a slight increase in risk and decrease in catch
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Figure 3. Results of the exploration of fitness functions for pollack. (a) The trajectories of the default rfb-rule (labelled “not optimized”,
including confidence intervals) and median trajectories for the optimized rfb-rule of several fitness functions are shown. Presented are the
historical fishing period (“history”) and the subsequent application of the rfb-rule (“projection”), for the “one-way” and the “random” fishing
history. (b) The progress of the search procedure of the genetic algorithm for the /SSBþCatchþriskþICV fitness function is visualized. The shaded
area indicates the total range of observed fitness values. (c) The summary statistics for the default rfb-rule parameterization in comparison
with the optimized solutions, both for the one-way and random fishing history are shown. The height of the bars indicates the deviation (up
or down) from the target of the optimization (MSY reference points for SSB, F, and catch; 0 for Blim risk and ICV). No fitness value is shown
for the non-optimized rule.
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variability. For most high-k stocks (k � 0:32 year�1), some im-

provement of the performance was achieved; however, the catch

was still low and fitness value improvements were less pro-

nounced than for stocks with lower k.

Stock groups
The optimization for the stock groups based on k (low,

0:08 � k � 0:19; medium, 0:20 � k � 0:32; high,

0:32 � k � 1; unit for k: year�1) was able to improve the per-

formance of the rfb-rule compared to its default parameterization

(Table 1, Figure 4b). When the fitness values from the stock-

specific optimization are summed up by stock group and com-

pared to the fitness of the stock group optimization, then the total

improvement was always better for the stock-specific optimiza-

tion. The overall improvement for the low and medium-k groups

was close to the stock-specific optimization. For the high-k group,

the improvement was less pronounced and the rfb-rule showed

poor performance.

Current ICES rule
The current ICES “2 over 3” advice rule for category 3 stocks

(with uncertainty cap and precautionary buffer) was compared to

the rfb-rule (Figure 5). The performance of the “2 over 3” rule

was dependent on the stock and fishing history. At first glance,

the performance of the “2 over 3” rule appeared better compared

to the default rfb-rule when considering fitness, except for some

high-k stocks. However, the optimized rfb-rule consistently per-

formed better than both of them throughout. In the one-way

fishing history, the “2 over 3” rule resulted in SSB values at or be-

low BMSY, with low SSBs for some medium k stocks, and generally

high Blim risks.

The performance of the default rfb-rule by stock was similar

for SSB, F, catch, and ICV when comparing fishing histories

(one-way vs. random). In contrast, the performance of the “2

over 3" rule was highly influenced by the fishing history prior

to its implementation, with low SSB values for some of the me-

dium-k stocks, and generally high levels of Blim risk under the

one-way fishing history.

For better comparability, the uncertainty cap of the “2 over

3” rule (limiting catch advice variability to no more than 20%)

was added to the default parameterization of the rfb-rule

(see Supplementary Figure S1). For most stocks, this moved the

performance of the rfb-rule closer to the “2 over 3” rule. Some

stocks exhibited an increased Blim risk, whereas the risk was re-

duced for others.
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Figure 4. Summary statistics for all 29 stocks of the MSE, for the default and optimized rfb-rule parameterization, and the one-way fishing
history. The fitness function corresponds to “SSBþCatchþriskþICV” in Figure 3. The stocks are sorted by the von Bertalanffy growth
parameter k in ascending order from left to right. (a) shows the results of stock-specific optimizations in which the genetic algorithm was run
independently for all stocks and in (b) the optimization was conducted for three stock groups based on k. For the groups in (b), only one
fitness value exists per group, which is the sum of the values for the stocks in the group. The stock abbreviations are defined in
Supplementary Table S1.
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Discussion
The main aim of this study was to explore the application of a ge-

netic algorithm to the optimization of the performance of a data-

limited catch rule (the rfb-rule). The results presented provide ev-

idence that the rfb-rule performance can be substantially im-

proved. The improvement was dependent on the simulated stock

(i.e. defined by life-history) and the definition of the fitness

function.

The optimization of the rfb-rule was performed for 29 stocks,

which were generated based on life-history parameters and rela-

tionships to develop age-structured operating models, and pro-

vides a theoretical basis for developing hypotheses about

population dynamics. The reason for this approach was that these

stocks are considered data-limited, and therefore analytical stock

assessments do not exist. Fischer et al. (2020) conducted extensive

sensitivity analyses on the assumptions and parameterizations of

the operating models such as steepness, recruitment variability,

and observation uncertainty. Even though the operating models

are based on real stock units, they might not necessarily exactly

represent the stocks (e.g. fishing histories were simulated to

represent certain conditions); nevertheless, they cover a wide

range of life-histories. The purpose of this study was, therefore,

only to a lesser extent to provide stock-specific tuning parame-

ters for the rfb-rule. If stock-specific tuning of the rule is

required, it is recommended that additional data be gathered to

fine-tune the operating models and apply the optimization

procedure set out here.

For most stocks, the optimized rfb-rule parameterization in-

cluded a biennial catch advice interval. Therefore, not unexpect-

edly, when this interval was fixed to a different value in the

optimization procedure for pollack, the performance of the rule

deteriorated. This result is an indication that updating the advice

more frequently does not necessarily result in better management,

particularly when ICV is considered an important component of

the fitness function. ICES usually provides biennial catch advice

for category 3 data-limited stocks, which reduces the operational

effort for conducting stock assessments for the many data-limited

stocks compared to an annual cycle. Nevertheless, for most

stocks, the usual 1-year time lag for the survey data was removed

in the optimized rfb-rule parameterization. Essentially, this means

that data up to the intermediate year are used to provide the

catch advice for the following advice year. This situation is feasi-

ble in an ICES setting where, for many stocks, scientific catch

recommendations for the advice year are released in the middle

of the intermediate year. Consequently, survey data from the be-

ginning of the intermediate year are available and can be included

in the analyses. In the present simulations, surveys were timed to

occur at the start of the year.

Previous work by Fischer et al. (2020) revealed that the rfb-rule

performs poorly for stocks with higher von Bertalanffy growth

one − way random
S

S
B

B
M

S
Y

0

1

2

3
F

F
M

S
Y

0.00

0.25

0.50

0.75

1.00

C
at

ch
M

S
Y

0.00

0.25

0.50

0.75

1.00

B
lim

 ri
sk

0.00

0.25

0.50

0.75

1.00

IC
V

0.00

0.25

0.50

0.75

1.00

fit
ne

ss
 v

al
ue

an
g3 rjc
2

sm
n

w
lf

m
eg lin rjc sy

c
sd

v
an

g
an

g2 po
l

ha
d

ne
p

m
ut

sb
b

pl
e

sy
c2 ar
g

tu
r

gu
t

w
hg bl

l
le

m
an

e
jn

d
sa

r
he

r
sa

n
an

g3 rjc
2

sm
n

w
lf

m
eg lin rjc sy

c
sd

v
an

g
an

g2 po
l

ha
d

ne
p

m
ut

sb
b

pl
e

sy
c2 ar
g

tu
r

gu
t

w
hg bl

l
le

m
an

e
jn

d
sa

r
he

r
sa

n

−3

−2

−1

0

stock

catch
rule

2 over 3

rfb
(default)

rfb
(optimised)

Figure 5. Comparison of the summary statistics of the current ICES management procedure and the default and optimized rfb-rule for two
fishing histories. The fitness function corresponds to “SSBþCatchþriskþICV” in Figure 3. The stocks are sorted by the von Bertalanffy growth
parameter k in ascending order from left to right.
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parameter k values (k � 0:32 year�1). Despite making the rfb-rule

much more flexible by allowing the reduction of the time lag and

introducing weighting of the catch rule components, the rule still

did not perform markedly better for these stocks, and caused

low yields and a high risk of dropping below biomass reference

points. For the remaining low- to medium-k stocks

(k � 0:32 year�1), the performance improvements through the

genetic algorithm were substantial, both for stock-specific as well

as the broader k-group optimization. Therefore, we must con-

sider that, for higher-k stocks, the rfb-rule cannot provide reliable

management options which are compliant with precautionary

and MSY principles, and alternatives need to be found.

Higher-k stocks are inherently more dynamic, i.e. exhibit more

inter-annual variability and have high population growth rates.

Therefore, they respond more quickly to changes in fishing

behaviour, environmental forcing, and errors in the feedback

control rule. Alternative management procedures, such as simple

constant harvest rate-based rules using an index of relative abun-

dance (e.g. an acoustic survey), might provide better management

without the need to enforce MSY reference levels. In addition, the

f-component of the rfb-rule based on mean catch length and an

FMSY proxy may not be optimal for these species, and alternative

length-based indicators that track incoming year-classes and

identify future abundance may potentially perform better.

Lessons can also be learned from the management of fisheries tar-

geting fast-growing and pelagic stocks in other parts of the world,

such as for Pacific sardine (PFMC, 2019) or the South African

pelagic fishery (Cochrane et al., 1998; De Oliveira and

Butterworth, 2004).

The first step in addressing the optimization of procedures for

managing marine living resources, like any other optimization

problem, requires the specification of management objectives.

Different stakeholders may have vastly different preferences for

utility functions (Fishburn and Kochenberger, 1979), and fisher-

ies management, like many other real-world problems, must

consider multiple objectives due to the potentially conflicting

interests of different asset and stakeholder groups (Rindorf et al.,

2017), e.g. fishers, policymakers, environmentalists, wholesalers,

retailers, consumers, and scientists. In an ideal set-up of an MSE

exercise, all stakeholders are involved from the beginning and

have their say in the selection of management objectives as well as

inevitable trade-offs. In reality, it can be challenging to receive

any interaction from stakeholders; for example, even though

methods workshops in ICES are open to the public, feedback

about management objectives sometimes has to be explicitly

requested, or such management objectives assumed by analysts

(ICES, 2020).

Alternative tuning algorithms to the optimization deployed

here exist (e.g. Givens et al., 1999). Optimization towards achiev-

ing some minimum performance (e.g. conservation considera-

tions) is possible but is likely to reduce the overall performance

by forfeiting yield. The implications of including specific risk

thresholds are a subject of future work.

Several fitness functions were explored and resulted in differ-

ent catch rule parameters and performance metrics. When only a

single component, e.g. SSB, was included, the SSB metric reached

levels very close to its optimum (BMSY); however, other important

metrics such as Blim risk and ICV were neglected. The fitness

function selected here can be considered partially arbitrary, al-

though based on careful consideration by the authors; it appears

to balance the objective of achieving MSY (for both SSB and

catch) while reducing risk and minimizing inter-annual catch

variability. The weighting of the fitness function elements can be

a point of discussion, and specific stakeholders might favour al-

ternative parameterizations. Furthermore, equal weighting was

applied to the deviation of performance metrics from their MSY

level (up or down). In terms of SSB, dropping below BMSY should

be reduced when considering conservation, whereas the opposite

is less critical. Nevertheless, the fitness function included Blim

risk, and therefore, low stock levels triggered a different response

in the optimization.

Any improvement can only be as good as the definition of the

fitness function, and the optimization is purely based on evaluat-

ing this fitness function, ignoring any other feature. Therefore,

fitness functions must be carefully designed, and it should be rec-

ognized that there might not be a single fitness function covering

all aspects. The type of fitness function used in this study could

be tailored for stock-specific case studies, as it included all metrics

important for the objective of a specific management system to

account for trade-offs. The development of case-specific control

rules is an improvement over the current approach of one rule

for all.

Uncertainty in the stock dynamics could also have been

explored, because these are data-limited stocks, and there is un-

certainty in processes such a growth, maturity, natural mortality,

and recruitment dynamics. This can be done by developing

multiple operating models for each stock and then averaging the

fitness function over these. In the present study, we explored the

application of the optimization approach with operating models

from Fischer et al. (2020) and, for simplicity, did not include

additional uncertainty considerations. Nevertheless, future case-

specific evaluations could include this. Another important con-

cept that could be explored is the monetization of the outcome of

applying a specific management procedure, e.g. by quantifying

the monetary value of exploiting a fish stock with the price of pre-

miums for an insurance against economic risks of the fishery

(Mumford et al., 2009). Such an evaluation would allow the

comparison of the application of new catch rules compared to

traditional management rules, or even the benefit of optimizing

management procedures, and should be considered in future

studies.

The types of simulations, as run here with the genetic algo-

rithm included in a full-feedback MSE framework, are highly

computationally demanding. The simulations, in particular for

the runs combining several stocks, had CPU runtimes of up to

several thousand hours. Therefore, it is implausible to attempt to

run these simulations on personal computers, and instead a

high-erformance computing (HPC) cluster with massive paralleli-

zation techniques was utilized. The computations were spread si-

multaneously over numerous computing nodes and hundreds of

CPU cores to reduce the runtime to mere hours. Specifically, a

hybrid parallelization approach was adopted where the individual

projections of the MSE (catch rule parameterizations) were paral-

lelized by executing them on different computing nodes with the

message passing interface (MPI; Walker, 1992), and the MSE pro-

jections themselves were parallelized within computing nodes.

For the purpose of this study, the MSE simulations were based

on FLR’s standardized MSE framework (Jardim et al., 2017) and

this was linked to a genetic algorithm optimization approach,

adapted for massive parallelization. The outcomes presented

here provide evidence that it is possible to link the two and that

management procedures can be improved successfully with this
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approach. The FLR MSE framework has recently been gaining

popularity for conducting MSEs within the ICES community,

and has, for example, been used to evaluate long-term manage-

ment plans of North Sea gadoid stocks (cod, haddock, whiting,

and saithe, ICES, 2019c) based on an EU-Norway request to

ICES. This evaluation included running an MSE for data-rich

stocks and a fully analytical stock assessment (SAM, Nielsen and

Berg, 2014) in the feedback loop, which caused substantial

computational complexity. In order to optimize a management

procedure (maximize yield while maintaining precautionary risk

considerations), an exhaustive grid search with manual interven-

tions was conducted over two harvest control rule parameters

(Ftarget and Btrigger). With a framework which includes machine

intelligence for the optimization, like the one developed for the

data-limited rfb-rule here, the computational effort could likely

be greatly reduced, thereby reducing computational expenses and

also shortening the runtime required for obtaining results.

Therefore, the optimization procedure explored here in a data-

limited context could also be applied to data-rich situations.

The application of a genetic algorithm as an optimization

procedure piloted here was specific to an empirical management

procedure considered by ICES. Nevertheless, the use of this ap-

proach is not limited to ICES or Europe and can be applied in

any management system. The optimization is aimed at satisfying

concrete management objectives, formalized in a fitness function.

Therefore, any management objective (be it for data-rich, data-

limited, or data-poor situations) can be included, as long as it is

possible to characterize the objectives mathematically.

The settings for the genetic algorithm (maximum number of

generations, convergence criteria, population size, mutation, and

crossover probabilities, etc.) might be, at least partially, consid-

ered arbitrary, and were a compromise between reducing compu-

tational complexity (computing time, memory demand, etc.) and

at the same time providing a reliable optimization. The optimiza-

tion process is entirely reproducible, but it is based on a stochas-

tic process and therefore dependent on random numbers. The

set-up of the search itself can be considered an optimization

problem (hyperparameter optimization). Due to the nature of

the optimization procedure, it cannot be guaranteed that the

optimized solution is indeed the global optimum of the multi-

dimensional parameter space (Holland, 1992). Nonetheless, the

solutions presented here are a substantial improvement to the

base case (the default catch rule parameters) and can be quanti-

fied with the fitness values and its components. An optimization

with a genetic algorithm has the benefit that the progress can be

observed directly, and the path leading to the final solution can

be traced back. Other machine learning methods, such as neural

networks, might also be used; however, they might be regarded as

black boxes which provide results, but it is not always possible to

describe them in a way humans can understand.

Finally, the performance of the rfb-rule analysed in this study

was compared to the current ICES advice rule for category 3

data-limited fish stocks (i.e. the “2 over 3” rule with an uncer-

tainty cap and a precautionary buffer; ICES, 2012, 2019a). At first

glance, the performance of the “2 over 3” rule might appear better

than the default rfb-rule, particularly when considering the ran-

dom fishing history. However, the behaviour of the rule is highly

influenced by the stock and its status prior to the implementa-

tion, as shown previously (Jardim et al., 2015; ICES, 2017c;

Fischer et al., 2020) and again here for the two fishing histories.

The “2 over 3” rule is aimed at maintaining a status quo and does

not include any target. Therefore, we recommend phasing out its

use within ICES and propose the rfb-rule tested in this study as

an improved successor. The reasoning in favour of the new catch

rule is that (i) it includes an MSY based target in addition to the

index trend, (ii) it underwent extensive MSE testing prior to its

implementation, (iii) it yields more stable outcomes irrespective

of the stock status, and (iv) its flexibility allows case-specific

optimization. Nonetheless, we cannot recommend the rfb-rule

for higher-k stocks due to its poor performance, even when opti-

mized. For such stocks, alternative management procedures, such

as constant harvest rates, should be investigated.
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