42,922 research outputs found

    Transfer-matrix study of a hard-square lattice gas with two kinds of particles and density anomaly

    Full text link
    Using transfer matrix and finite-size scaling methods, we study the thermodynamic behavior of a lattice gas with two kinds of particles on the square lattice. Only excluded volume interactions are considered, so that the model is athermal. Large particles exclude the site they occupy and its four first neighbors, while small particles exclude only their site. Two thermodynamic phases are found: a disordered phase where large particles occupy both sublattices with the same probability and an ordered phase where one of the two sublattices is preferentially occupied by them. The transition between these phases is continuous at small concentrations of the small particles and discontinuous at larger concentrations, both transitions are separated by a tricritical point. Estimates of the central charge suggest that the critical line is in the Ising universality class, while the tricritical point has tricritical Ising (Blume-Emery-Griffiths) exponents. The isobaric curves of the total density as functions of the fugacity of small or large particles display a minimum in the disordered phase.Comment: 9 pages, 7 figures and 4 table

    Collapse transition in polymer models with multiple monomers per site and multiple bonds per edge

    Get PDF
    We present results from extensive Monte Carlo simulations of polymer models where each lattice site can be visited by up to KK monomers and no restriction is imposed on the number of bonds on each lattice edge. These \textit{multiple monomer per site} (MMS) models are investigated on the square and cubic lattices, for K=2K=2 and K=3K=3, by associating Boltzmann weights ω0=1\omega_0=1, ω1=eβ1\omega_1=e^{\beta_1} and ω2=eβ2\omega_2=e^{\beta_2} to sites visited by 1, 2 and 3 monomers, respectively. Two versions of the MMS models are considered for which immediate reversals of the walks are allowed (RA) or forbidden (RF). In contrast to previous simulations of these models, we find the same thermodynamic behavior for both RA and RF versions. In three-dimensions, the phase diagrams - in space β2×β1\beta_2 \times \beta_1 - are featured by coil and globule phases separated by a line of Θ\Theta points, as thoroughly demonstrated by the metric νt\nu_t, crossover ϕt\phi_t and entropic γt\gamma_t exponents. The existence of the Θ\Theta-lines is also confirmed by the second virial coefficient. This shows that no discontinuous collapse transition exists in these models, in contrast to previous claims based on a weak bimodality observed in some distributions, which indeed exists in a narrow region very close to the Θ\Theta-line when β1<0\beta_1 < 0. Interestingly, in two-dimensions, only a crossover is found between the coil and globule phases

    Width and extremal height distributions of fluctuating interfaces with window boundary conditions

    Full text link
    We present a detailed study of squared local roughness (SLRDs) and local extremal height distributions (LEHDs), calculated in windows of lateral size ll, for interfaces in several universality classes, in substrate dimensions ds=1d_s = 1 and ds=2d_s = 2. We show that their cumulants follow a Family-Vicsek type scaling, and, at early times, when ξ≪l\xi \ll l (ξ\xi is the correlation length), the rescaled SLRDs are given by log-normal distributions, with their nnth cumulant scaling as (ξ/l)(n−1)ds(\xi/l)^{(n-1)d_s}. This give rise to an interesting temporal scaling for such cumulants ⟨wn⟩c∼tγn\left\langle w_n \right\rangle_c \sim t^{\gamma_n}, with γn=2nβ+(n−1)ds/z=[2n+(n−1)ds/α]β\gamma_n = 2 n \beta + {(n-1)d_s}/{z} = \left[ 2 n + {(n-1)d_s}/{\alpha} \right] \beta. This scaling is analytically proved for the Edwards-Wilkinson (EW) and Random Deposition interfaces, and numerically confirmed for other classes. In general, it is featured by small corrections and, thus, it yields exponents γn\gamma_n's (and, consequently, α\alpha, β\beta and zz) in nice agreement with their respective universality class. Thus, it is an useful framework for numerical and experimental investigations, where it is, usually, hard to estimate the dynamic zz and mainly the (global) roughness α\alpha exponents. The stationary (for ξ≫l\xi \gg l) SLRDs and LEHDs of Kardar-Parisi-Zhang (KPZ) class are also investigated and, for some models, strong finite-size corrections are found. However, we demonstrate that good evidences of their universality can be obtained through successive extrapolations of their cumulant ratios for long times and large ll's. We also show that SLRDs and LEHDs are the same for flat and curved KPZ interfaces.Comment: 11 pages, 10 figures, 4 table

    Roughness exponents and grain shapes

    Full text link
    In surfaces with grainy features, the local roughness ww shows a crossover at a characteristic length rcr_c, with roughness exponent changing from α1≈1\alpha_1\approx 1 to a smaller α2\alpha_2. The grain shape, the choice of ww or height-height correlation function (HHCF) CC, and the procedure to calculate root mean-square averages are shown to have remarkable effects on α1\alpha_1. With grains of pyramidal shape, α1\alpha_1 can be as low as 0.71, which is much lower than the previous prediction 0.85 for rounded grains. The same crossover is observed in the HHCF, but with initial exponent χ1≈0.5\chi_1\approx 0.5 for flat grains, while for some conical grains it may increase to χ1≈0.7\chi_1\approx 0.7. The universality class of the growth process determines the exponents α2=χ2\alpha_2=\chi_2 after the crossover, but has no effect on the initial exponents α1\alpha_1 and χ1\chi_1, supporting the geometric interpretation of their values. For all grain shapes and different definitions of surface roughness or HHCF, we still observe that the crossover length rcr_c is an accurate estimate of the grain size. The exponents obtained in several recent experimental works on different materials are explained by those models, with some surface images qualitatively similar to our model films.Comment: 7 pages, 6 figures and 2 table
    • …
    corecore