28,735 research outputs found

    Universal zero-bias conductance through a quantum wire side-coupled to a quantum dot

    Full text link
    A numerical renormalization-group study of the conductance through a quantum wire side-coupled to a quantum dot is reported. The temperature and the dot-energy dependence of the conductance are examined in the light of a recently derived linear mapping between the Kondo-regime temperature-dependent conductance and the universal function describing the conductance for the symmetric Anderson model of a quantum wire with an embedded quantum dot. Two conduction paths, one traversing the wire, the other a bypass through the quantum dot, are identified. A gate potential applied to the quantum wire is shown to control the flow through the bypass. When the potential favors transport through the wire, the conductance in the Kondo regime rises from nearly zero at low temperatures to nearly ballistic at high temperatures. When it favors the dot, the pattern is reversed: the conductance decays from nearly ballistic to nearly zero. When the fluxes through the two paths are comparable, the conductance is nearly temperature-independent in the Kondo regime, and a Fano antiresonance in the fixed-temperature plot of the conductance as a function of the dot energy signals interference. Throughout the Kondo regime and, at low temperatures, even in the mixed-valence regime, the numerical data are in excellent agreement with the universal mapping.Comment: 12 pages, with 9 figures. Submitted to PR

    Newtonian View of General Relativistic Stars

    Get PDF
    Although general relativistic cosmological solutions, even in the presence of pressure, can be mimicked by using neo-Newtonian hydrodynamics, it is not clear whether there exists the same Newtonian correspondence for spherical static configurations. General relativity solutions for stars are known as the Tolman-Oppenheimer-Volkoff (TOV) equations. On the other hand, the Newtonian description does not take into account the total pressure effects and therefore can not be used in strong field regimes. We discuss how to incorporate pressure in the stellar equilibrium equations within the neo-Newtonian framework. We compare the Newtonian, neo-Newtonian and the full relativistic theory by solving the equilibrium equations for both three approaches and calculating the mass-radius diagrams for some simple neutron stars equation of state.Comment: 6 pages, 3 figures. v2 matches accepted version (EPJC

    Thermal dependence of the zero-bias conductance through a nanostructure

    Full text link
    We show that the conductance of a quantum wire side-coupled to a quantum dot, with a gate potential favoring the formation of a dot magnetic moment, is a universal function of the temperature. Universality prevails even if the currents through the dot and the wire interfere. We apply this result to the experimental data of Sato et al.[Phys. Rev. Lett. 95, 066801 (2005)].Comment: 6 pages, 3 figures. More detailed presentation, and updated references. Final version

    Hydrogels in the treatment of rheumatoid arthritis: drug delivery systems and artificial matrices for dynamic in vitro models

    Get PDF
    Rheumatoid arthritis (RA) is an autoimmune and chronic inflammatory disorder that mostly affects the synovial joints and can promote both cartilage and bone tissue destruction. Several conservative treatments are available to relieve pain and control the inflammation; however, traditional drugs administration are not fully effective and present severe undesired side effects. Hydrogels are a very attractive platform as a drug delivery system to guarantee these handicaps are reduced, and the therapeutic effect from the drugs is maximized. Furthermore, hydrogels can mimic the physiological microenvironment and have the mechanical behavior needed for use as cartilage in vitro model. The testing of these advanced delivery systems is still bound to animal disease models that have shown low predictability. Alternatively, hydrogel-based human dynamic in vitro systems can be used to model diseases, bypassing some of the animal testing problems. RA dynamic disease models are still in an embryonary stage since advances regarding healthy and inflamed cartilage models are currently giving the first steps regarding complexity increase. Herein, recent studies using hydrogels in the treatment of RA, featuring different hydrogel formulations are discussed. Besides, their use as artificial extracellular matrices in dynamic in vitro articular cartilage is also reviewed.Norte2020 project (NORTE-08-5369-FSE000044) and the Portuguese Foundation for Science and Technology (FCT) program (PD/BD/143081/2018). IFC thanks the TERM RES-Hub, Tissue Engineering and Regenerative Medicine Infrastructure project, funded by FCT. The FCT distinction attributed to JMO under the Investigator FCT program (number IF/01285/2015) is also greatly acknowledge

    Avaliação da produção e de doenças em genótipos de mandioca em área de várzea do Rio Solimões.

    Get PDF
    As podridões radiculares em mandioca (Manihot esculenta Grantz) têm ocasionado sérios problemas na produção de mandioca no Estado do Amazonas. Os sintomas manifestam-se em plantas jovens e adultas afetando a região do colo, raiz e haste. O objetivo da pesquisa foi avaliar a produção de raiz e a ocorrência de podridões radiculares em genótipos de mandioca do Banco Ativo de Germoplasma (BAG) na área de várzea do Rio Solimões, do Campo Experimental do Caldeirão, pertencente à Embrapa Amazônia Ocidental. O levantamento da incidência da doença foi por meio da identificação visual na planta e raiz. Foram avaliados 67 genótipos, dos quais 21 se destacaram. Destes, 42,8% permaneceram com as 10 plantas/parcela, enquanto nos demais (57,2%) morreu apenas uma planta. Entre os genótipos que se destacaram, constatou-se que as infecções na planta e raiz foi maior com os fungos Phytophthora drechsleri + Fusarium sp. (42,9%), seguida por P. drechsleri (38,1%) e sadias (19,0%). Os acessos IM-1688; IM-1995; IM-2007 e IM-2042 não apresentaram raiz podre

    Influência do período de colheita na produção de raiz e fécula de mandioca (Manihot esculenta Crantz) no Amazonas.

    Get PDF
    Este trabalho teve como objetivo selecionar cultivares de mandioca com melhor desempenho produtivo, submetidas a duas épocas de colheita em condições de terra firme no Amazonas

    A semiquantitative approach to the impurity-band-related transport properties of GaMnAs nanolayers

    Full text link
    We investigate the spin-polarized transport of GaMnAs nanolayers in which a ferromagnetic order exists below a certain transition temperature. Our calculation for the self-averaged resistivity takes into account the existence of an impurity band determining the extended ("metallic" transport) or localized (hopping by thermal excitation) nature of the states at and near the Fermi level. Magnetic order and resistivity are inter-related due to the influence of the spin polarization of the impurity band and the effect of the Zeeman splitting on the mobility edge. We obtain, for a given range of Mn concentration and carrier density, a "metallic" behavior in which the transport by extended carriers dominates at low temperature, and is dominated by the thermally excited localized carriers near and above the transition temperature. This gives rise to a conspicuous hump of the resistivity which has been experimentally observed and brings light onto the relationship between transport and magnetic properties of this material
    corecore