13 research outputs found

    Uganda's experience in Ebola virus disease outbreak preparedness, 2018-2019.

    Get PDF
    BACKGROUND: Since the declaration of the 10th Ebola Virus Disease (EVD) outbreak in DRC on 1st Aug 2018, several neighboring countries have been developing and implementing preparedness efforts to prevent EVD cross-border transmission to enable timely detection, investigation, and response in the event of a confirmed EVD outbreak in the country. We describe Uganda's experience in EVD preparedness. RESULTS: On 4 August 2018, the Uganda Ministry of Health (MoH) activated the Public Health Emergency Operations Centre (PHEOC) and the National Task Force (NTF) for public health emergencies to plan, guide, and coordinate EVD preparedness in the country. The NTF selected an Incident Management Team (IMT), constituting a National Rapid Response Team (NRRT) that supported activation of the District Task Forces (DTFs) and District Rapid Response Teams (DRRTs) that jointly assessed levels of preparedness in 30 designated high-risk districts representing category 1 (20 districts) and category 2 (10 districts). The MoH, with technical guidance from the World Health Organisation (WHO), led EVD preparedness activities and worked together with other ministries and partner organisations to enhance community-based surveillance systems, develop and disseminate risk communication messages, engage communities, reinforce EVD screening and infection prevention measures at Points of Entry (PoEs) and in high-risk health facilities, construct and equip EVD isolation and treatment units, and establish coordination and procurement mechanisms. CONCLUSION: As of 31 May 2019, there was no confirmed case of EVD as Uganda has continued to make significant and verifiable progress in EVD preparedness. There is a need to sustain these efforts, not only in EVD preparedness but also across the entire spectrum of a multi-hazard framework. These efforts strengthen country capacity and compel the country to avail resources for preparedness and management of incidents at the source while effectively cutting costs of using a "fire-fighting" approach during public health emergencies

    Intermittent preventive therapy with sulfadoxine-pyrimethamine for malaria in pregnancy: a cross-sectional study from Tororo, Uganda.

    Get PDF
    Intermittent preventive treatment during pregnancy (IPTp) with sulfadoxine-pyrimethamine (SP) is widely recommended in sub-Saharan Africa to reduce the risk of malaria and improve birth outcomes. However, there are reports that the efficacy of IPTp with SP is waning, especially in parts of Africa where antimalarial resistance to this drug has become widespread.We conducted a cross-sectional study of 565 HIV-uninfected women giving birth at Tororo District Hospital in southeastern Uganda. The primary objective of the study was to measure associations between use of SP during pregnancy from antenatal records and the risk of adverse outcomes including placental malaria, low birth weight, maternal parasitemia and maternal anemia. The proportion of women who reported taking 0, 1, 2, and 3 doses of SP during pregnancy was 5.7%, 35.8%, 56.6% and 2.0% respectively. Overall, the prevalence of placental malaria was 17.5%, 28.1%, and 66.2% by placental smear, PCR, and histopathology, respectively. In multivariate analyses controlling for potential confounders, ≥ 2 doses of SP was associated with non-significant trends towards lower odds of placental malaria by placental smear (OR = 0.75, p = 0.25), placental malaria by PCR (OR = 0.93, p = 0.71), placental malaria by histopathology (OR = 0.75, p = 0.16), low birth weight (OR = 0.63, p = 0.11), maternal parasitemia (OR = 0.88, p = 0.60) and maternal anemia (OR = 0.88, p = 0.48). Using a composite outcome, ≥ 2 doses of SP was associated with a significantly lower odds of placental malaria, low birth weight, maternal parasitemia, or maternal anemia (OR = 0.52, p = 0.01).In this area of Uganda with intense malaria transmission, the prevalence of placental malaria by histopathology was high even among women who reported taking at least 2 doses of SP during pregnancy. The reported use of ≥ 2 doses of SP was not associated with protection against individual birth and maternal outcome measures but did protect against a composite measure of any adverse outcome

    Spatial overlap links seemingly unconnected genotype-matched TB cases in rural Uganda

    No full text
    <div><p>Introduction</p><p>Incomplete understanding of TB transmission dynamics in high HIV prevalence settings remains an obstacle for prevention. Understanding where transmission occurs could provide a platform for case finding and interrupting transmission.</p><p>Methods</p><p>From 2012–2015, we sought to recruit all adults starting TB treatment in a Ugandan community. Participants underwent household (HH) contact investigation, and provided names of social contacts, sites of work, healthcare and socializing, and two sputum samples. <i>Mycobacterium tuberculosis</i> culture-positive specimens underwent 24-loci MIRU-VNTR and spoligotyping. We sought to identify epidemiologic links between genotype-matched cases by analyzing social networks and mapping locations where cases reported spending ≥12 hours over the one-month pre-treatment. Sites of spatial overlap (≤100m) between genotype-matched cases were considered potential transmission sites. We analyzed social networks stratified by genotype clustering status, with cases linked by shared locations, and compared network density by location type between clustered vs. non-clustered cases.</p><p>Results</p><p>Of 173 adults with TB, 131 (76%) were enrolled, 108 provided sputum, and 84/131 (78%) were MTB culture-positive: 52% (66/131) tested HIV-positive. Of 118 adult HH contacts, 105 (89%) were screened and 3 (2.5%) diagnosed with active TB. Overall, 33 TB cases (39%) belonged to 15 distinct MTB genotype-matched clusters. Within each cluster, no cases shared a HH or reported shared non-HH contacts. In 6/15 (40%) clusters, potential epidemiologic links were identified by spatial overlap at specific locations: 5/6 involved health care settings. Genotype-clustered TB social networks had significantly greater network density based on shared clinics (p<0.001) and decreased density based on shared marketplaces (p<0.001), compared to non-clustered networks.</p><p>Conclusions</p><p>In this molecular epidemiologic study, links between MTB genotype-matched cases were only identifiable via shared locations, healthcare locations in particular, rather than named contacts. This suggests most transmission is occurring between casual contacts, and emphasizes the need for improved infection control in healthcare settings in rural Africa.</p></div

    Associations between use of IPTp-SP and outcomes at delivery.

    No full text
    a<p>Adjusted for maternal age, gravidity, bednet use, level of education, wealth index, and transmission season.</p>b<p>Any of the following: placental malaria by any detection method, low birth weight, maternal peripheral parasitemia, or maternal anemia.</p

    Characteristics of study participants stratified by number of SP doses reported taken.

    No full text
    a<p>Reported 0 (n = 32) or 1 (n = 202) doses of SP taken during pregnancy.</p>b<p>Reported 2 (n = 320) or 3 (n = 11) doses of SP taken during pregnancy.</p>c<p>High transmission season May–June 2011.</p
    corecore