286 research outputs found

    A Simple Way of Calculating Cosmological Relic Density

    Full text link
    A simple procedure is presented which leads to a dramatic simplification in the calculation of the relic density of stable particles in the Universe.Comment: 7 pages in LaTex, no figures; University of Michigan preprint UM-TH-94-02 (February 1994). Changes: a coefficient in b0b^0 (Eq. 16) corrected; added Acknowledgements and revised Note Added; plain LaTex only (no need to use RevTex

    Protecting the Baryon Asymmetry with Thermal Masses

    Full text link
    We consider the evolution of baryon number BB in the early universe under the influence of rapid sphaleron interactions and show that BB will remain nonzero at all times even in the case of B−L=0B-L = 0. This result arises due to thermal Yukawa interactions that cause nonidentical dispersion relations (thermal masses) for different lepton families. We point out the relevance of our result to the Affleck-Dine type baryogenesis.Comment: 11pp., plain tex, UMN-TH-1248/94, CfPA-TH-94-1

    Mapping systematic errors in helium abundance determinations using Markov Chain Monte Carlo

    Full text link
    Monte Carlo techniques have been used to evaluate the statistical and systematic uncertainties in the helium abundances derived from extragalactic H~II regions. The helium abundance is sensitive to several physical parameters associated with the H~II region. In this work, we introduce Markov Chain Monte Carlo (MCMC) methods to efficiently explore the parameter space and determine the helium abundance, the physical parameters, and the uncertainties derived from observations of metal poor nebulae. Experiments with synthetic data show that the MCMC method is superior to previous implementations (based on flux perturbation) in that it is not affected by biases due to non-physical parameter space. The MCMC analysis allows a detailed exploration of degeneracies, and, in particular, a false minimum that occurs at large values of optical depth in the He~I emission lines. We demonstrate that introducing the electron temperature derived from the [O~III] emission lines as a prior, in a very conservative manner, produces negligible bias and effectively eliminates the false minima occurring at large optical depth. We perform a frequentist analysis on data from several "high quality" systems. Likelihood plots illustrate degeneracies, asymmetries, and limits of the determination. In agreement with previous work, we find relatively large systematic errors, limiting the precision of the primordial helium abundance for currently available spectra.Comment: 25 pages, 11 figure

    Effective degrees of freedom during the radiation era

    Full text link
    We update the curves of the effective degrees of freedom for the energy density g∗(T)g_*(T) and for the entropy density g∗S(T)g_{*S}(T) during the era of radiation domination in the Universe. We find that a plain count of effective degrees of freedom sets an upper limit to the temperature of the quark-hadron transition at Tc<235T_c< 235 MeV for the energy density and Tc<245T_c< 245 MeV for the entropy density.Comment: 3 pages, 2 figure

    Lattice QCD Impact on Determination of the CKM Matrix

    Full text link
    We review many lattice QCD calculations that impact the precise determination of the CKM matrix. We focus on decay constants and semileptonic form factors of both light (π\pi and K) and heavy-light (D(s)D_{(s)} and B(s)B_{(s)}) mesons. Implication of Λb\Lambda_b form factors will be shown. When combined with experimental results for branching fractions and differential decay rates, the above calculations strongly constrain the first two rows of the CKM matrix. We discuss a long standing difference between ∣Vub∣|V_{ub}| and ∣Vcb∣|V_{cb}| as determined from exclusive or inclusive decays.Comment: 10 pages, 6 figures, Proceedings of 16th Conference on Flavor Physics and CP Violation (FPCP 2018), July 14-18, 2018, Hyderabad, Indi

    Precision Primordial 4^4He Measurement with CMB Experiments

    Full text link
    Big bang nucleosynthesis (BBN) and the cosmic microwave background (CMB) are two major pillars of cosmology. Standard BBN accurately predicts the primordial light element abundances (4^4He, D, 3^3He and 7^7Li), depending on one parameter, the baryon density. Light element observations are used as a baryometers. The CMB anisotropies also contain information about the content of the universe which allows an important consistency check on the Big Bang model. In addition CMB observations now have sufficient accuracy to not only determine the total baryon density, but also resolve its principal constituents, H and 4^4He. We present a global analysis of all recent CMB data, with special emphasis on the concordance with BBN theory and light element observations. We find ΩBh2=0.025+0.0019−0.0026\Omega_{B}h^{2}=0.025+0.0019-0.0026 and Yp=0.250+0.010−0.014Y_{p}=0.250+0.010-0.014 (fraction of baryon mass as 4^4He) using CMB data alone, in agreement with 4^4He abundance observations. With this concordance established we show that the inclusion of BBN theory priors significantly reduces the volume of parameter space. In this case, we find ΩBh2=0.0244+0.00137−0.00284\Omega_{B}h^2=0.0244+0.00137-0.00284 and Yp=0.2493+0.0006−0.001Y_p = 0.2493+0.0006-0.001. We also find that the inclusion of deuterium abundance observations reduces the YpY_p and ΩBh2\Omega_{B}h^2 ranges by a factor of ∌\sim 2. Further light element observations and CMB anisotropy experiments will refine this concordance and sharpen BBN and the CMB as tools for precision cosmology.Comment: 7 pages, 3 color figures made minor changes to bring inline with journal versio

    Light Unstable Sterile Neutrino

    Get PDF
    The three massless active (doublet) neutrinos may mix with two heavy and one \underline {light} sterile (singlet) neutrinos so that the induced masses and mixings among the former are able to explain the present data on atmospheric and solar neutrino oscillations. If the LSND result is also to be explained, one active neutrino mass eigenstate must mix with the light sterile neutrino. A specific model is proposed with the spontaneous and soft explicit breaking of a new global U(1)SU(1)_S symmetry so that a sterile neutrino will decay into an active antineutrino and a nearly massless pseudo-Majoron.Comment: Discussion and references adde

    Big Bang Nucleosynthesis with Gaussian Inhomogeneous Neutrino Degeneracy

    Full text link
    We consider the effect of inhomogeneous neutrino degeneracy on Big Bang nucleosynthesis for the case where the distribution of neutrino chemical potentials is given by a Gaussian. The chemical potential fluctuations are taken to be isocurvature, so that only inhomogeneities in the electron chemical potential are relevant. Then the final element abundances are a function only of the baryon-photon ratio η\eta, the effective number of additional neutrinos ΔNÎœ\Delta N_\nu, the mean electron neutrino degeneracy parameter Οˉ\bar \xi, and the rms fluctuation of the degeneracy parameter, σΟ\sigma_\xi. We find that for fixed η\eta, ΔNÎœ\Delta N_\nu, and Οˉ\bar \xi, the abundances of helium-4, deuterium, and lithium-7 are, in general, increasing functions of σΟ\sigma_\xi. Hence, the effect of adding a Gaussian distribution for the electron neutrino degeneracy parameter is to decrease the allowed range for η\eta. We show that this result can be generalized to a wide variety of distributions for Ο\xi.Comment: 9 pages, 3 figures, added discussion of neutrino oscillations, altered presentation of figure

    Solar Neutrino Constraints on the BBN Production of Li

    Full text link
    Using the recent WMAP determination of the baryon-to-photon ratio, 10^{10} \eta = 6.14 to within a few percent, big bang nucleosynthesis (BBN) calculations can make relatively accurate predictions of the abundances of the light element isotopes which can be tested against observational abundance determinations. At this value of \eta, the Li7 abundance is predicted to be significantly higher than that observed in low metallicity halo dwarf stars. Among the possible resolutions to this discrepancy are 1) Li7 depletion in the atmosphere of stars; 2) systematic errors originating from the choice of stellar parameters - most notably the surface temperature; and 3) systematic errors in the nuclear cross sections used in the nucleosynthesis calculations. Here, we explore the last possibility, and focus on possible systematic errors in the He3(\alpha,\gamma)Be7 reaction, which is the only important Li7 production channel in BBN. The absolute value of the cross section for this key reaction is known relatively poorly both experimentally and theoretically. The agreement between the standard solar model and solar neutrino data thus provides additional constraints on variations in the cross section (S_{34}). Using the standard solar model of Bahcall, and recent solar neutrino data, we can exclude systematic S_{34} variations of the magnitude needed to resolve the BBN Li7 problem at > 95% CL. Additional laboratory data on He3(\alpha,\gamma)Be7 will sharpen our understanding of both BBN and solar neutrinos, particularly if care is taken in determining the absolute cross section and its uncertainties. Nevertheless, it already seems that this ``nuclear fix'' to the Li7 BBN problem is unlikely; other possible solutions are briefly discussed.Comment: 21 pages, 3 ps figure

    Constraints on massive gravity theory from big bang nucleosynthesis

    Full text link
    The massive gravity cosmology is studied in the scenario of big bang nucleosynthesis. By making use of current bounds on the deviation from the fractional mass, we derive the constraints on the free parameters of the theory. The cosmological consequences of the model are also discussed in the framework of the PAMELA experiment.Comment: 5 page
    • 

    corecore