1,859 research outputs found

    Dual Projection and Selfduality in Three Dimensions

    Get PDF
    We discuss the notion of duality and selfduality in the context of the dual projection operation that creates an internal space of potentials. Contrary to the prevailing algebraic or group theoretical methods, this technique is applicable to both even and odd dimensions. The role of parity in the kernel of the Gauss law to determine the dimensional dependence is clarified. We derive the appropriate invariant actions, discuss the symmetry groups and their proper generators. In particular, the novel concept of duality symmetry and selfduality in Maxwell theory in (2+1) dimensions is analysed in details. The corresponding action is a 3D version of the familiar duality symmetric electromagnetic theory in 4D. Finally, the duality symmetric actions in the different dimensions constructed here manifest both the SO(2) and Z2Z_2 symmetries, contrary to conventional results.Comment: 20 pages, late

    Helicity, polarization, and Riemann-Silberstein vortices

    Full text link
    Riemann-Silberstein (RS) vortices have been defined as surfaces in spacetime where the complex form of a free electromagnetic field given by F=E+iB is null (F.F=0), and they can indeed be interpreted as the collective history swept out by moving vortex lines of the field. Formally, the nullity condition is similar to the definition of "C-lines" associated with a monochromatic electric or magnetic field, which are curves in space where the polarization ellipses degenerate to circles. However, it was noted that RS vortices of monochromatic fields generally oscillate at optical frequencies and are therefore unobservable while electric and magnetic C-lines are steady. Here I show that under the additional assumption of having definite helicity, RS vortices are not only steady but they coincide with both sets of C-lines, electric and magnetic. The two concepts therefore become one for waves of definite frequency and helicity. Since the definition of RS vortices is relativistically invariant while that of C-lines is not, it may be useful to regard the vortices as a wideband generalization of C-lines for waves of definite helicity.Comment: 5 pages, no figures. Submitted to J of Optics A, special issue on Singular Optics; minor changes from v.

    On the Deconfinement Phase Transition in the Resonance Gas

    Full text link
    We obtain the constraints on the ruling parameters of the dense hadronic gas model at the critical temperature and propose the quasiuniversal ratios of the thermodynamic quantities. The possible appearence of thermodynamical instability in such a model is discussed.Comment: 7 pages, plain LaTeX, BI-TP 94/4

    Slit Observations and Empirical Calculations for HII Regions

    Full text link
    When analysing HII regions, a possible source of systematic error on empirically derived physical quantities is the limited size of the slit used for the observations. A grid of photoionization models was built through the Aangaba code varying the ionizing radiation spectrum emitted by a stellar cluster, as well as the gas abundance. The calculated line surface brightness was then used to simulate slit observations and to derive empirical parameters using the usual methods described in the literature. Depending on the fraction of the object covered by the slit, the parameters can be different from those obtained from observations of the whole object, an effect that is mainly dependent on the age of the ionizing stellar cluster. The low-ionization forbidden lines are more sensitive to the size of the area covered by the slit than the high-ionization forbidden lines or recombination lines. Regarding the temperature indicator T[OIII], the slit effects are small since this temperature is derived from [OIII] lines. On the other hand, for the abundance indicator R23, which depends also on the [OII] line, the slit effect is slightly higher. Therefore, the systematic error due to slit observations on the O abundance is low, being usually less than 10%, except for HII regions powered by stellar clusters with a relative low number of ionizing photons between 13.6 and 54.4 eV, which create a smaller O++ emitting volume. In this case, the systematic error on the empirical O abundance deduced from slit observations is more than 10% when the covered area is less than 50%.Comment: To be published in MNRAS, accepted in 09/09/2005, 17 pages and 6 figure

    Determination of Omega_b From Big Bang Nucleosynthesis in the Presence of Regions of Antimatter

    Full text link
    Production of regions of antimatter in the early universe is predicted in many baryogenesis models. Small scale antimatter regions would annihilate during or soon after nucleosynthesis, affecting the abundances of the light elements. In this paper we study how the acceptable range in Omega_b changes in the presence of antimatter regions, as compared to the standard big bang nucleosynthesis. It turns out that it is possible to produce at the same time both a low 4He value (Y_p < 0.240) and a low D/H value (D/H < 4e-5), but overproduction of 7Li is unavoidable at large Omega_b.Comment: 9 pages, PRD version, ref. 6 correcte

    Cosmological Constraints on Late-time Entropy Production

    Get PDF
    We investigate cosmological effects concerning the late-time entropy production due to the decay of non-relativistic massive particles. The thermalization process of neutrinos after the entropy production is properly solved by using the Boltzmann equation. If a large entropy production takes place at late time t\simeq 1 sec, it is found that a large fraction of neutrinos cannot be thermalized. This fact loosens the tight constraint on the reheating temperature T_R from the big bang nucleosynthesis and T_R could be as low as 0.5 MeV. The influence on the large scale structure formation and cosmic microwave background anisotropies is also discussed.Comment: 4 pages, using RevTeX and five postscript figures, comments added, to appear in Phys. Rev. Let

    Precision Prediction for the Big-Bang Abundance of Primordial Helium

    Full text link
    Within the standard models of particle physics and cosmology we have calculated the big-bang prediction for the primordial abundance of \he to a theoretical uncertainty of less than 0.1 \pct (δYP<±0.0002)(\delta Y_P < \pm 0.0002), improving the current theoretical precision by a factor of 10. At this accuracy the uncertainty in the abundance is dominated by the experimental uncertainty in the neutron mean lifetime, τn=885.4±2.0sec\tau_n = 885.4 \pm 2.0 sec. The following physical effects were included in the calculation: the zero and finite-temperature radiative, Coulomb and finite-nucleon-mass corrections to the weak rates; order-α\alpha quantum-electrodynamic correction to the plasma density, electron mass, and neutrino temperature; and incomplete neutrino decoupling. New results for the finite-temperature radiative correction and the QED plasma correction were used. In addition, we wrote a new and independent nucleosynthesis code designed to control numerical errors to be less than 0.1\pct. Our predictions for the \EL[4]{He} abundance are presented in the form of an accurate fitting formula. Summarizing our work in one number, YP(η=5×1010)=0.2462±0.0004(expt)±<0.0002(theory) Y_P(\eta = 5\times 10^{-10}) = 0.2462 \pm 0.0004 (expt) \pm < 0.0002 (theory). Further, the baryon density inferred from the Burles-Tytler determination of the primordial D abundance, ΩBh2=0.019±0.001\Omega_B h^2 = 0.019\pm 0.001, leads to the prediction: YP=0.2464±0.0005(D/H)±<0.0002(theory)±0.0005(expt)Y_P = 0.2464 \pm 0.0005 (D/H) \pm < 0.0002 (theory) \pm 0.0005 (expt). This ``prediction'' and an accurate measurement of the primeval \he abundance will allow an important consistency test of primordial nucleosynthesis.Comment: Replaced fitting formulas - new versions differ by small but significant amount. Other minor changes. 30 pages, 17 figures, 5 table

    INTEGRAL discovery of persistent hard X-ray emission from the Soft Gamma Ray Repeater SGR 1806-20

    Full text link
    We report the discovery of persistent hard X-ray emission extending up to 150 keV from the soft gamma-ray repeater SGR 1806-20 using data obtained with the INTEGRAL satellite in 2003-2004. Previous observations of hard X-rays from objects of this class were limited to short duration bursts and rare transient episodes of strongly enhanced luminosity (``flares''). The emission observed with the IBIS instrument above 20 keV has a power law spectrum with photon index in the range 1.5-1.9 and a flux of 3 milliCrabs, corresponding to a 20-100 keV luminosity of ~10^36 erg s^-1 (for a distance of 15 kpc). The spectral hardness and the luminosity correlate with the level of source activity as measured from the number of emitted bursts.Comment: 5 pages, 3 figures, Revised version accepted for publication in Astronomy and Astrophysics Letter

    Neutrino Fluxes from CMSSM LSP Annihilations in the Sun

    Get PDF
    We evaluate the neutrino fluxes to be expected from neutralino LSP annihilations inside the Sun, within the minimal supersymmetric extension of the Standard Model with supersymmetry-breaking scalar and gaugino masses constrained to be universal at the GUT scale (the CMSSM). We find that there are large regions of typical CMSSM (m1/2,m0)(m_{1/2}, m_0) planes where the LSP density inside the Sun is not in equilibrium, so that the annihilation rate may be far below the capture rate. We show that neutrino fluxes are dependent on the solar model at the 20% level, and adopt the AGSS09 model of Serenelli et al. for our detailed studies. We find that there are large regions of the CMSSM (m1/2,m0)(m_{1/2}, m_0) planes where the capture rate is not dominated by spin-dependent LSP-proton scattering, e.g., at large m1/2m_{1/2} along the CMSSM coannihilation strip. We calculate neutrino fluxes above various threshold energies for points along the coannihilation/rapid-annihilation and focus-point strips where the CMSSM yields the correct cosmological relic density for tan(beta) = 10 and 55 for μ\mu > 0, exploring their sensitivities to uncertainties in the spin-dependent and -independent scattering matrix elements. We also present detailed neutrino spectra for four benchmark models that illustrate generic possibilities within the CMSSM. Scanning the cosmologically-favored parts of the parameter space of the CMSSM, we find that the IceCube/DeepCore detector can probe at best only parts of this parameter space, notably the focus-point region and possibly also at the low-mass tip of the coannihilation strip.Comment: 32 pages, 13 figures. v2: updated/expanded discussion of IceCube/DeepCor

    Pulsar kicks from neutrino oscillations

    Full text link
    Neutrino oscillations in a core-collapse supernova may be responsible for the observed rapid motions of pulsars. Given the present bounds on the neutrino masses, the pulsar kicks require a sterile neutrino with mass 2-20 keV and a small mixing with active neutrinos. The same particle can be the cosmological dark matter. Its existence can be confirmed the by the X-ray telescopes if they detect a 1-10 keV photon line from the decays of the relic sterile neutrinos. In addition, one may be able to detect gravity waves from a pulsar being accelerated by neutrinos in the event of a nearby supernova.Comment: invited review article to appear in Int. J. Mod. Phys. (21 pages, 6 figures
    corecore