3,126 research outputs found

    Early star formation traced by the highest redshift quasars

    Full text link
    The iron abundance relative to alpha-elements in the circumnuclear region of quasars is regarded as a clock of the star formation history and, more specifically, of the enrichment by SNIa. We investigate the iron abundance in a sample of 22 quasars in the redshift range 3.0<z<6.4 by measuring their rest frame UV FeII bump, which is shifted into the near-IR, and by comparing it with the MgII 2798 flux. The observations were performed with a device that can obtain near-IR spectra in the range 0.8-2.4 um in one shot, thereby enabling an optimal removal of the continuum underlying the FeII bump. We detect iron in all quasars including the highest redshift (z=6.4) quasar currently known. The uniform observational technique and the wide redshift range allows a reliable study of the trend of the FeII/MgII ratio with redshift. We find the FeII/MgII ratio is nearly constant at all redshifts, although there is marginal evidence for a higher FeII/MgII ratio in the quasars at z~6. If the FeII/MgII ratio reflects the Fe/alpha abundance, this result suggests that the z~6 quasars have already undergone a major episode of iron enrichment. We discuss the possible implications of this finding for the star formation history at z>6. We also detect a population of weak iron emitters at z~4.5, which are possibly hosted in systems that evolved more slowly. Alternatively, the trend of the FeII/MgII ratio at high redshift may reflect significantly different physical conditions of the circumnuclear gas in such high redshift quasars.Comment: Replaced to match the accepted version (ApJL in press), 5 page

    The Nuclear Stellar Cluster in the Seyfert~1 Galaxy NGC 3227: High Angular Resolution NIR Imaging and Spectroscopy

    Get PDF
    NIR high angular resolution speckle imaging and imaging spectroscopy of the nuclear region (10'' ~ 840pc) of the Seyfert1 galaxy NGC3227 are presented. A nuclear stellar cluster is slightly resolved in the J and H band with increasing contribution to the NIR continuum from the K to the J band. The stellar absorption lines are extended compared to the neighboring continuum suggesting a cluster size of ~ 70pc FWHM. Analysis of those lines suggests that the stars are contributing about 65% (40%) of the total continuum emission in the H (K) band in a 3.6'' aperture. Population synthesis in conjunction with NIR spectral synthesis indicates an age of 25 to 50 Myr when red supergiants contribute most to the NIR light. This is supported by published optical data on the MgIb line and the CaII triplet. Although a higher age of ~ 0.5 Gyr where AGB stars dominate the NIR light can not be excluded, the observed parameters are at the limit of those expected for a cluster dominated by AGB stars. However, in either case the resolved stellar cluster contributes only about ~ 15 % of the total dynamical mass in the inner 300pc implying another much older stellar population. Pure constant star formation over the last 10 Gyr can be excluded. Therefore, at least two star formation/starburst events took place in the nucleus of NGC3227. Since such sequences in the nuclear star formation history are also observed in the nuclei of other galaxies a link between the activity of the star formation and the AGN itself seems likely.Comment: accepted for publication in the Astrophysical Journal, 46 pages, 15 figure

    Stellar and gaseous abundances in M82

    Full text link
    The near infrared (IR) absorption spectra of starburst galaxies show several atomic and molecular lines from red supergiants which can be used to infer reliable stellar abundances. The metals locked in stars give a picture of the galaxy metallicity prior to the last burst of star formation. The enrichment of the new generation of stars born in the last burst can be traced by measuring the hot gas in the X-rays. For the first time detailed stellar abundances in the nuclear region of the starburst galaxy M82 have been obtained. They are compared with those of the hot gas as derived from an accurate re-analysis of the XMM and Chandra nuclear X-ray spectra. The cool stars and the hot gas suggest [Fe/H]=-0.35+/-0.2 dex, and an overall [Si,Mg/Fe] enhancement by 0.4 and 0.5 dex, respectively. This is consistent with a major chemical enrichment by SNe II explosions in recursive bursts on short timescales. Oxygen is more puzzling to interpret since it is enhanced by 0.3 dex in stars and depleted by 0.2 dex in the hot gas. None of the standard enrichment scenarios can fully explain such a behavior when compared with the other alpha-elements.Comment: APJ, in pres

    High precision radial velocities with GIANO spectra

    Get PDF
    Radial velocities (RV) measured from near-infrared (NIR) spectra are a potentially excellent tool to search for extrasolar planets around cool or active stars. High resolution infrared (IR) spectrographs now available are reaching the high precision of visible instruments, with a constant improvement over time. GIANO is an infrared echelle spectrograph at the Telescopio Nazionale Galileo (TNG) and it is a powerful tool to provide high resolution spectra for accurate RV measurements of exoplanets and for chemical and dynamical studies of stellar or extragalactic objects. No other high spectral resolution IR instrument has GIANO's capability to cover the entire NIR wavelength range (0.95-2.45 micron) in a single exposure. In this paper we describe the ensemble of procedures that we have developed to measure high precision RVs on GIANO spectra acquired during the Science Verification (SV) run, using the telluric lines as wavelength reference. We used the Cross Correlation Function (CCF) method to determine the velocity for both the star and the telluric lines. For this purpose, we constructed two suitable digital masks that include about 2000 stellar lines, and a similar number of telluric lines. The method is applied to various targets with different spectral type, from K2V to M8 stars. We reached different precisions mainly depending on the H -magnitudes: for H ~ 5 we obtain an rms scatter of ~ 10 m s-1, while for H ~ 9 the standard deviation increases to ~ 50 - 80 m s-1. The corresponding theoretical error expectations are ~4 m s-1 and 30 m s-1, respectively. Finally we provide the RVs measured with our procedure for the targets observed during GIANO Science Verification.Comment: 26 pages, 15 figures, 6 table

    NGC 5506 Unmasked as a Narrow Line Seyfert 1: A Direct View of the Broad Line Region using Near-IR Spectroscopy

    Get PDF
    This letter presents incontrovertible evidence that NGC5506 is a Narrow Line Seyfert 1 (NLSy1). Our new 0.9-1.4 micron spectrum of its nucleus clearly shows the permitted OI 1.1287 micron line (with full width at half maximum <2000 km/s) and the `1 micron FeII lines'. These lines can only originate in the optically-thick broad line region (BLR) and, among Seyfert nuclei the latter series of lines are seen only in NLSy1s. The obscuration to the BLR, derived from a rough estimate of the OI 1.1287 micron / OI 8446 Angstrom ratio and from the reddening of the near-IR Paschen lines, is A_v > 5. Together, these results make NGC5506 the first identified case of an optically-obscured NLSy1. This new classification helps explain its radio to X-ray properties, which until now were considered highly anomalous. However, interesting new concerns are raised: e.g., NGC5506 is unusual in hosting both a `type 1' AGN and a nuclear water vapor megamaser. As the brightest known NLSy1, NGC5506 is highly suitable for study at wavebands less affected by obscuration.Comment: 4 pages, to appear in A&A Letter

    Detecting Primordial Stars

    Full text link
    We discuss the expected properties of the first stellar generations in the Universe. We find that it is possible to discern truly primordial populations from the next generation of stars by measuring the metallicity of high-z star forming objects. The very low background of the future James Webb Space Telescope (JWST) will enable it to image and study first-light sources at very high redshifts, whereas its relatively small collecting area limits its capability in obtaining spectra of z~10-15 first-light sources to either the bright end of their luminosity function or to strongly lensed sources. With a suitable investment of observing time JWST will be able to detect individual Population III supernovae, thus identifying the very first stars that formed in the Universe.Comment: [8 pages, 5 figures] Invited Talk, to appear in IMF@50: The Stellar Initial Mass Function Fifty Years Later, eds E. Corbelli, F. Palla, and H. Zinnecker (Dordrecht: Kluwer

    A Second Luminous Blue Variable in the Quintuplet Cluster

    Get PDF
    H and K band moderate resolution and 4 μ\mum high resolution spectra have been obtained for FMM#362, a bright star in the Quintuplet Cluster near the Galactic Center. The spectral features in these bands closely match those of the Pistol Star, a luminous blue variable and one of the most luminous stars known. The new spectra and previously-obtained photometry imply a very high luminosity for FMM#362, L ≥106\geq 10^6 \Lsun, and a temperature of 10,000 - 13,000 K. Based on its luminosity, temperature, photometric variability, and similarities to the Pistol Star, we conclude that FMM#362 is a luminous blue variable.Comment: Accepted for publication in The Astrophysical Journal Letters, 4 PostScript figures, 2 table

    Sequential drain amylase to guide drain removal following pancreatectomy

    Get PDF
    BACKGROUND: Although used as criterion for early drain removal, postoperative day (POD) 1 drain fluid amylase (DFA) ≤ 5000 U/L has low negative predictive value for clinically relevant postoperative pancreatic fistula (CR-POPF). It was hypothesized that POD3 DFA ≤ 350 could provide further information to guide early drain removal. METHODS: Data from a pancreas surgery consortium database for pancreatoduodenectomy and distal pancreatectomy patients were analyzed retrospectively. Those patients without drains or POD 1 and 3 DFA data were excluded. Patients with POD1 DFA ≤ 5000 were divided into groups based on POD3 DFA: Group A (≤350) and Group B (>350). Operative characteristics and 60-day outcomes were compared using chi-square test. RESULTS: Among 687 patients in the database, all data were available for 380. Fifty-five (14.5%) had a POD1 DFA > 5000. Among 325 with POD1 DFA ≤ 5000, 254 (78.2%) were in Group A and 71 (21.8%) in Group B. Complications (35 (49.3%) vs 87 (34.4%); p = 0.021) and CR-POPF (13 (18.3%) vs 10 (3.9%); p < 0.001) were more frequent in Group B. CONCLUSIONS: In patients with POD1 DFA ≤ 5000, POD3 DFA ≤ 350 may be a practical test to guide safe early drain removal. Further prospective testing may be useful
    • …
    corecore