10 research outputs found
Identificação de polĂmeros de microplásticos encontrados no trato digestivo de peixes do Lago de Amatitlán, Guatemala
O objetivo desta pesquisa foi a identificação, por meio de espectroscopia no infravermelho com transformada de Fourier combinada com reflectância total atenuada (FTIR-ATR), de microplásticos extraĂdos do trato gastrointestinal de peixes coletados no Lago de Amatitlán, para determinar os principais polĂmeros e a possĂvel origem da contaminação por esses materiais. Foram analisados 68 microplásticos, correspondendo a 10% do total de microplásticos extraĂdos. Estes originaram-se de 36 espĂ©cimes, sendo 35 da espĂ©cie Oreochromis niloticus e um de Parachromis managuensis, dos quais foram analisados de 1 a 5 microplásticos por espĂ©cime. Os polĂmeros identificados foram polipropileno (PP), nylon, polietileno de alta densidade (HDPE), tereftalato de polietileno (PET), látex, poliestireno (PE), polietileno de baixa densidade (LDPE) e poliuretano (PU). O polipropileno (32), o polietileno de alta densidade (13) e o nylon (10) foram os polĂmeros mais frequentes. Os possĂveis itens plásticos que podem ter originado os microplásticos incluem brinquedos, equipamentos de laboratĂłrio, baldes, embalagens de alimentos, tubulações, isolamento para cabos, tĂŞxteis, cordas e mĂłveis que sĂŁo produzidos na indĂşstria do plástico, localizada principalmente na vertente sul da cidade da Guatemala. AlĂ©m disso, as espĂ©cies de peixes do presente estudo sustentam pescarias importantes, o que levanta problemas de saĂşde humana, uma vez que a ingestĂŁo de peixes que consomem plásticos tem o potencial de aumentar a carga corporal de substâncias quĂmicas perigosas, pois estas aderem superficialmente aos plásticos no ambiente e sĂŁo posteriormente bioacumuladas
Determinación de arsénico y mercurio en agua superficial del lago de Atitlán
El lago de Atitlán, considerado uno de los lagos más bellos del mundo, tiene una superficie de 125.7 km2, una profundidad máxima de aproximadamente 350 m, y se encuentra en el departamento de Sololá, en el occidente de Guatemala. Desde 2009 se han observado floraciones extensivas de cianobacterias en el lago, reflejando la contaminaciĂłn del agua en la cuenca. Se determinaron los niveles de arsĂ©nico (As) y mercurio (Hg) en agua superficial del lago de Atitlán, por espectrofotometrĂÂa de absorciĂłn atĂłmica (EAA), en cuatro muestreos realizados en marzo, mayo, agosto y octubre de 2014 en 14 sitios. Diez sitios se encuentran localizados en el lago, habiendo sido definidos en estudios anteriores con base en su cercanĂÂa a poblaciones asentadas en la orillas del lago. Dos sitios corresponden a los principales rĂÂos tributarios, y los restantes dos sitios a la entrada y salida de la planta de tratamiento Los Cebollales, ubicada en Panajachel. Los niveles de As encontrados en el lago de Atitlán, tributarios y en la planta de tratamiento, fueron superiores a 20 ĂŽÂĽg/L. Los resultados indican que la contaminaciĂłn del lago de Atitlán por As se debe principalmente a la geologĂÂa de la cuenca, al localizarse en una zona volcánica. Los niveles cuantificables de As, son superiores al nivel máximo permitido para agua potable en la Norma de Agua Potable (NGO 29001:99) de la ComisiĂłn Guatemalteca de Normas (COGUANOR), por lo que el agua del lago de Atitlán no se considera apta para el consumo humano
Seed Propagation and Constituents of the Essential Oil of <em>Stevia serrata</em> Cav. from Guatemala
Stevia serrata Cav. (Eupatorieae, Asteraceae) grows in Central America and Mexico usually over 1500 m. In this study, essential oils of aerial parts from three populations of western Guatemala were obtained yielding 0.17–0.27% of oil by hydrodistillation. Chamazulene (42–62%) was the most abundant compound in the oil analyzed GC/MS, also presenting germacrene D (4.4–15.3%), caryophyllene oxide (3.2–11.8%), (E)-nerolidol (3.9–7.1%), spathulenol (2.3–7.9%), and (E)-caryophyllene (2.5–6.6%). Besides, a propagation trial was carried out on seeds of plants collected in Santa LucĂa Utatlán, as the first step for the domestication of the plant, obtaining approximately 75% survival in the transplanting of the germinated seedlings. After the flowering of the individuals, a greenish essential oil was obtained from the roots yielding 0.2% of oil. This oil did not present chamazulene, but α-longipinene (23.5%), germacrene D (22.2%), santolina triene (12.6%), and (E)-caryophyllene (8.1%) as major components. As conclusion, it was confirmed that the aerial parts of the essential oil of S. serrata from western Guatemala presents a high content of chamazulene and that there is feasibility for the domestication of the plant through the germination of seeds
Metabolitos secundarios y cianotoxinas producidos por cianobacterias del lago de Atitlán.
Desde 2008 han ocurrido florecimientos extensivos de cianobacterias en el lago de Atitlán,Guatemala, principalmente de la especie Limnoraphis robusta (Parakutty), como consecuenciadel incremento de los niveles de contaminaciĂłn y de variaciones climáticas en la cuenca,desconociĂ©ndose si las cianobacterias del lago eran capaces de producir toxinas y otros metabolitossecundarios que pudieran ser beneficiosos. En el presente trabajo se investigaron los metabolitossecundarios producidos por L. robusta, aislada y cultivada en el laboratorio, asĂ como cianotoxinasen biomasa de fitoplancton colectada en tres sitios en el lago de Atitlán. Para el análisis decianotoxinas, se realizaron colectas de biomasa de fitoplancton, por arrastre de red de fitoplancton,en tres sitios en el lago de Atitlán, en tres muestreos realizados entre 2011 y 2012. Las cianotoxinasfueron analizadas por cromatografĂa de lĂquidos acoplada a espectrometrĂa de masas (LC/MS),habiĂ©ndose encontrado microcistina-LR en dos muestras (una en concentraciĂłn no cuantificabley la otra de 20.1 ng/g de biomasa seca), colectadas en octubre de 2012, en las cuales L. robustaera la especie fitoplanctĂłnica dominante. Se obtuvieron resultados positivos para flavonoides,saponinas y antraquinonas, no encontrándose presencia de alcaloides. Las bajas concentracionesde microcistina-LR encontrados en la biomasa colectada en el lago no suponen riesgo para lapoblaciĂłn humana, pero se comprobĂł que las cianobacterias del lago de Atitlán son capaces deproducir microcistinas. Los resultados positivos para saponinas, flavonoides y antraquinonas en L.robusta, son prometedores para la bĂşsqueda de metabolitos con actividad biolĂłgica con posiblesaplicaciones en la biotecnologĂa
Determinación de arsénico y mercurio en agua superficial del lago de Atitlán
El lago de Atitlán, considerado uno de los lagos más bellos del mundo, tiene una superficie de 125.7 km2, una profundidad máxima de aproximadamente 350 m, y se encuentra en el departamento de Sololá, en el occidente de Guatemala. Desde 2009 se han observado floraciones extensivas de cianobacterias en el lago, reflejando la contaminaciĂłn del agua en la cuenca. Se determinaron los niveles de arsĂ©nico (As) y mercurio (Hg) en agua superficial del lago de Atitlán, por espectrofotometrĂÂa de absorciĂłn atĂłmica (EAA), en cuatro muestreos realizados en marzo, mayo, agosto y octubre de 2014 en 14 sitios. Diez sitios se encuentran localizados en el lago, habiendo sido definidos en estudios anteriores con base en su cercanĂÂa a poblaciones asentadas en la orillas del lago. Dos sitios corresponden a los principales rĂÂos tributarios, y los restantes dos sitios a la entrada y salida de la planta de tratamiento Los Cebollales, ubicada en Panajachel. Los niveles de As encontrados en el lago de Atitlán, tributarios y en la planta de tratamiento, fueron superiores a 20 ĂŽÂĽg/L. Los resultados indican que la contaminaciĂłn del lago de Atitlán por As se debe principalmente a la geologĂÂa de la cuenca, al localizarse en una zona volcánica. Los niveles cuantificables de As, son superiores al nivel máximo permitido para agua potable en la Norma de Agua Potable (NGO 29001:99) de la ComisiĂłn Guatemalteca de Normas (COGUANOR), por lo que el agua del lago de Atitlán no se considera apta para el consumo humano.</p
Metabolitos secundarios y cianotoxinas producidos por cianobacterias del lago de Atitlán.
Extensive cyanobacterial blooms have occurred in Atitlan lake since 2008, being Limnoraphis
robusta (Parakutty) the most abundant species recorded. It is generally accepted that these blooms
are caused by the rising levels of pollution and climatic variations in the basin. However, it was
unknown if the lake cyanobacteria were capable of producing toxins or beneficial secondary
metabolites. Four groups of secondary metabolites were investigated in L. robusta, which was
isolated and cultivated in the laboratory. Cyanotoxins were analyzed from phytoplankton biomass
collected in lake Atitlan. Biomass samples were collected with the aid of a phytoplankton net in
three different sites of the lake surface. This was carried out during three field trips conducted
between 2011 and 2012. Cyanotoxins were analyzed by liquid chromatography coupled to mass
spectrometry (LC/MS). Microcystin-LR was found in low concentrations in two biomass samples
collected in October 2012 (one in a non-quantifiable concentration and the other of 20.1 ng / g of
dry biomass). L. robusta was the dominant phytoplanctonic species. Positive results were obtained
for the tests of flavonoids, saponins and anthraquinones through phytochemical tests performed on
the extracts of the biomass cultivated in the laboratory. Alkaloids were not found.
The low concentration levels of microcystin-LR found in the biomass collected in the lake surface
do not pose a risk to the local human population. Nevertheless, it was proven that cyanobacteria in
Atitlan lake are capable of producing microcystins-LR. The positive results, regarding the presence
of saponins, flavonoids and anthraquinones in L. robusta, are promising for the quest of metabolites
with biological activity and possible applications in biotechnology.Desde 2008 han ocurrido florecimientos extensivos de cianobacterias en el lago de Atitlán,Guatemala, principalmente de la especie Limnoraphis robusta (Parakutty), como consecuenciadel incremento de los niveles de contaminaciĂłn y de variaciones climáticas en la cuenca,desconociĂ©ndose si las cianobacterias del lago eran capaces de producir toxinas y otros metabolitossecundarios que pudieran ser beneficiosos. En el presente trabajo se investigaron los metabolitossecundarios producidos por L. robusta, aislada y cultivada en el laboratorio, asĂ como cianotoxinasen biomasa de fitoplancton colectada en tres sitios en el lago de Atitlán. Para el análisis decianotoxinas, se realizaron colectas de biomasa de fitoplancton, por arrastre de red de fitoplancton,en tres sitios en el lago de Atitlán, en tres muestreos realizados entre 2011 y 2012. Las cianotoxinasfueron analizadas por cromatografĂa de lĂquidos acoplada a espectrometrĂa de masas (LC/MS),habiĂ©ndose encontrado microcistina-LR en dos muestras (una en concentraciĂłn no cuantificabley la otra de 20.1 ng/g de biomasa seca), colectadas en octubre de 2012, en las cuales L. robustaera la especie fitoplanctĂłnica dominante. Se obtuvieron resultados positivos para flavonoides,saponinas y antraquinonas, no encontrándose presencia de alcaloides. Las bajas concentracionesde microcistina-LR encontrados en la biomasa colectada en el lago no suponen riesgo para lapoblaciĂłn humana, pero se comprobĂł que las cianobacterias del lago de Atitlán son capaces deproducir microcistinas. Los resultados positivos para saponinas, flavonoides y antraquinonas en L.robusta, son prometedores para la bĂşsqueda de metabolitos con actividad biolĂłgica con posiblesaplicaciones en la biotecnologĂa
Composition and Antibacterial Activity of the Essential Oil from Pimenta dioica (L.) Merr. from Guatemala
Background:Pimenta dioica is a native tree of Central America, Southern Mexico, and the Caribbean used in traditional medicine. It grows in wet forests in the Guatemalan departments of Petén and Izabal. Since the plant is not being economically exploited in Guatemala, this study was aimed at determining the composition of the essential oil of P. dioica leaves and fruits and the antibacterial activity of the leaves in order to evaluate its possible use in health products. The essential oils of fruits and leaves are used as rubefacient, anti-inflammatory, carminative, antioxidant, and antiflatulent in different countries. Methods: Fruits and leaves of P. dioica from Izabal Department were collected in April 2014 and extracted by hydrodistillation method. The oils were analyzed by gas chromatography coupled with mass spectrometry (GC/MS). Results: Yields of 1.02 ± 0.11% for dried leaves and 1.51 ± 0.26% for fruits were obtained. Eugenol was the main component (65.9–71.4%). The leaf oil showed growth inhibition against two Gram-positive and two Gram-negative bacteria. Conclusions: The authors consider that the tree’s leaves can be evaluated as a source of ingredients for antiseptic products, and that it is important to evaluate other types of properties such as anti-inflammatory activity
Characterization of the Antinociceptive Activity from Stevia serrata Cav
Background: Stevia serrata Cav. (Asteraceae), widely found in Guatemala, is used to treat gastrointestinal problems. The aim of this study was to demonstrate the antinociceptive and anti-inflammatory effects of the essential oil (EO) and the mechanism of action. Methods: EO was tested in chemical (capsaicin- and glutamate-induced licking response) or thermal (hot plate) models of nociception at 10, 30 or 100 mg/kg doses. The mechanism of action was evaluated using two receptor antagonists (naloxone, atropine) and an enzyme inhibitor (L-NAME). The anti-hyperalgesic effect was evaluated using carrageenan-induced nociception and evaluated in the hot plate. Results: All three doses of EO reduced licking response induced by glutamate, and higher doses reduced capsaicin-induced licking. EO also increased area under the curve, similar to the morphine-treated group. The antinociceptive effect induced by EO was reversed by pretreatment of mice with naloxone (1 mg/kg, ip), atropine (1 mg/kg, ip) or L-NAME (3 mg/kg, ip). EO also demonstrated an anti-hyperalgesic effect. The 100 mg/kg dose increased the latency time, even at 1 h after oral administration and this effect has been maintained until the 96th hour, post-administration. Conclusions: Our data suggest that essential oil of S. serrata presents an antinociceptive effect mediated, at least in part, through activation of opioid, cholinergic and nitrergic pathways
Chemical composition and evaluation of antinociceptive activity of the essential oil of <i>Stevia serrata</i> Cav. from Guatemala
<p>The composition and the antinociceptive activity of the essential oil of <i>Stevia serrata</i> Cav. from a population located in the west highlands of Guatemala were evaluated. A yield of 0.2% (w/w) of essential oil was obtained by hydrodistillation of the dried aerial parts of the plant. The essential oil analysed by GC-FID and GC-MS showed a high content of sesquiterpenoids, with chamazulene (60.1%) as the major component and 91.5% of the essential oil composition was identified. To evaluate antinociceptive activity in mice, the essential oil of <i>S. serrata</i> Cav. was administered as gavage, using three different doses. In the formalin test, the animals were pre-treated with oral doses of the essential oil before the administration of formalin. Oral administration of <i>S. serrata</i> Cav. essential oil produced a marked antinociceptive activity. Therefore, the plant could be domesticated as a source of essential oil rich in chamazulene for developing medicinal products.</p