232 research outputs found

    Directional motion of forced polymer chains with hydrodynamic interaction

    Get PDF
    We study the propulsion of a one-dimensional (1D) polymer chain under sinusoidal external forces in the overdamped (low Reynolds number) regime. We show that, when hydrodynamical interactions are included, the polymer presents directional motion which depends on the phase differences of the external force applied along the chain. Moreover, the velocity shows a maximum as a function of the frequency. We discuss the relevance of all these results in light of recent nanotechnology experiments.Comment: 5 pages, 6 figure

    A General Rhodium Catalyst for the Deuteration of Boranes and Hydrides of the Group 14 Elements

    Get PDF
    Pinacolborane, catecholborane, triethylsilane, triphenylsilane, dimethylphenylsilane, 1, 1, 1, 3, 5, 5, 5-heptamethyltrisiloxane, triethylgermane, triphenylgermane, and triphenylstannane deuterated at the heteroatom position have been catalytically prepared in 50-70% isolated yield, through H/D exchange between the D2 molecule and the respective boranes and hydrides of the group 14 elements, in the presence of the rhodium(I)-monohydride catalyst precursor RhH{¿3-P, O, P-[xant(PiPr2)2]} (xant(PiPr2)2 = 9, 9-dimethyl-4, 5-bis(diisopropylphosphino)xanthene)

    Kinetic Analysis and Sequencing of Si-H and C-H Bond Activation Reactions: Direct Silylation of Arenes Catalyzed by an Iridium-Polyhydride

    Get PDF
    The saturated trihydride IrH3{¿3-P, O, P-[xant(PiPr2)2]} (1; xant(PiPr2)2 = 9, 9-dimethyl-4, 5-bis(diisopropylphosphino)xanthene) coordinates the Si-H bond of triethylsilane, 1, 1, 1, 3, 5, 5, 5-heptamethyltrisiloxane, and triphenylsilane to give the s-complexes IrH3(¿2-H-SiR3){¿2-cis-P, P-[xant(PiPr2)2]}, which evolve to the dihydride-silyl derivatives IrH2(SiR3){¿3-P, O, P-[xant(PiPr2)2]} (SiR3 = SiEt3 (2), SiMe(OSiMe3)2 (3), SiPh3 (4)) by means of the oxidative addition of the coordinated bond and the subsequent reductive elimination of H2. Complexes 2-4 activate a C-H bond of symmetrically and asymmetrically substituted arenes to form silylated arenes and to regenerate 1. This sequence of reactions defines a cycle for the catalytic direct C-H silylation of arenes. Stoichiometric isotopic experiments and the kinetic analysis of the transformations demonstrate that the C-H bond rupture is the rate-determining step of the catalysis. As a consequence, the selectivity of the silylation of substituted arenes is generally governed by ligand-substrate steric interactions

    Ammonia Borane Dehydrogenation Promoted by a Pincer-Square-Planar Rhodium(I) Monohydride: A Stepwise Hydrogen Transfer from the Substrate to the Catalyst

    Get PDF
    The pincer d8-monohydride complex RhH{xant(PiPr2)2} (xant(PiPr2)2 = 9, 9-dimethyl-4, 5-bis(diisopropylphosphino)xanthene) promotes the release of 1 equiv of hydrogen from H3BNH3 and H3BNHMe2 with TOF50% values of 3150 and 1725 h–1, to afford [BH2NH2]n and [BH2NMe2]2 and the tandem ammonia borane dehydrogenation–cyclohexene hydrogenation. DFT calculations on the ammonia borane dehydrogenation suggest that the process takes place by means of cis-¿2-PP-species, through four stages including: (i) Shimoi-type coordination of ammonia borane, (ii) homolytic addition of the coordinated H–B bond to afford a five-coordinate dihydride-boryl-rhodium(III) intermediate, (iii) reductive intramolecular proton transfer from the NH3 group to one of the hydride ligands, and (iv) release of H2 from the resulting square-planar hydride dihydrogen rhodium(I) intermediate

    Light yield determination in large sodium iodide detectors applied in the search for dark matter

    Get PDF
    Application of NaI(Tl) detectors in the search for galactic dark matter particles through their elastic scattering off the target nuclei is well motivated because of the long standing DAMA/LIBRA highly significant positive result on annual modulation, still requiring confirmation. For such a goal, it is mandatory to reach very low threshold in energy (at or below the keV level), very low radioactive background (at a few counts/keV/kg/day), and high detection mass (at or above the 100 kg scale). One of the most relevant technical issues is the optimization of the crystal intrinsic scintillation light yield and the efficiency of the light collecting system for large mass crystals. In the frame of the ANAIS (Annual modulation with NaI Scintillators) dark matter search project large NaI(Tl) crystals from different providers coupled to two photomultiplier tubes (PMTs) have been tested at the Canfranc Underground Laboratory. In this paper we present the estimates of the NaI(Tl) scintillation light collected using full-absorption peaks at very low energy from external and internal sources emitting gammas/electrons, and single-photoelectron events populations selected by using very low energy pulses tails. Outstanding scintillation light collection at the level of 15~photoelectrons/keV can be reported for the final design and provider chosen for ANAIS detectors. Taking into account the Quantum Efficiency of the PMT units used, the intrinsic scintillation light yield in these NaI(Tl) crystals is above 40~photoelectrons/keV for energy depositions in the range from 3 up to 25~keV. This very high light output of ANAIS crystals allows triggering below 1~keV, which is very important in order to increase the sensitivity in the direct detection of dark matter

    Iridium-Promoted B-B Bond Activation: Preparation and X-ray Diffraction Analysis of a mer-Tris(boryl) Complex

    Get PDF
    The tris(boryl) complex Ir(Bcat)3{¿3-P,O,P-[xant(PiPr2)2]} has been prepared. Its X-ray diffraction analysis structure reveals that the boryl groups are disposed in a mer rearrangement despite of the very strong trans influence of the boryl ligands. An energy decomposition analysis method coupled to natural orbitals for chemical valence suggests that the p-backdonation from the metal to the pz atomic orbital of the boron atom decreases about 43% in the Ir-B bonds disposed mutually trans with regard to the other one

    Background analysis and status of the ANAIS dark matter project

    Full text link
    ANAIS (Annual modulation with NaI Scintillators) is a project aiming to set up at the new facilities of the Canfranc Underground Laboratory (LSC), a large scale NaI(Tl) experiment in order to explore the DAMA/LIBRA annual modulation positive result using the same target and technique. Two 12.5 kg each NaI(Tl) crystals provided by Alpha Spectra took data at the LSC in the ANAIS-25 set-up. The comparison of the background model for the ANAIS-25 prototypes with the experimental results is presented. ANAIS crystal radiopurity goals have been achieved for Th-232 and U-238 chains, but a Pb-210 contamination out-of-equilibrium was identified, whose origin has been studied. The high light collection efficiency obtained with these prototypes allows to anticipate an energy threshold of the order of 1 keVee. A new detector, with improved performances, was received in March 2015 and very preliminary results are shown.Comment: 6 pages, 7 figure
    corecore