48 research outputs found

    Linear response of entanglement entropy from holography

    Get PDF
    For time-independent excited states in conformal field theories, the entanglement entropy of small subsystems satisfies a `first law'-like relation, in which the change in entanglement is proportional to the energy within the entangling region. Such a law holds for time-dependent scenarios as long as the state is perturbatively close to the vacuum, but is not expected otherwise. In this paper we use holography to investigate the spread of entanglement entropy for unitary evolutions of special physical interest, the so-called global quenches. We model these using AdS-Vaidya geometries. We find that the first law of entanglement is replaced by a linear response relation, in which the energy density takes the role of the source and is integrated against a time-dependent kernel with compact support. For adiabatic quenches the standard first law is recovered, while for rapid quenches the linear response includes an extra term that encodes the process of thermalization. This extra term has properties that resemble a time-dependent `relative entropy'. We propose that this quantity serves as a useful order parameter to characterize far-from-equilibrium excited states. We illustrate our findings with concrete examples, including generic power-law and periodically driven quenches.Comment: 31+3 pages, 8 figures; v2: typos fixed and references added; v3: claims on universality sharpened (section 2.1), version to appear in JHE

    Annexin-A5 assembled into two-dimensional arrays promotes cell membrane repair

    Get PDF
    Eukaryotic cells possess a universal repair machinery that ensures rapid resealing of plasma membrane disruptions. Before resealing, the torn membrane is submitted to considerable tension, which functions to expand the disruption. Here we show that annexin-A5 (AnxA5), a protein that self-assembles into two-dimensional (2D) arrays on membranes upon Ca2+ activation, promotes membrane repair. Compared with wild-type mouse perivascular cells, AnxA5-null cells exhibit a severe membrane repair defect. Membrane repair in AnxA5-null cells is rescued by addition of AnxA5, which binds exclusively to disrupted membrane areas. In contrast, an AnxA5 mutant that lacks the ability of forming 2D arrays is unable to promote membrane repair. We propose that AnxA5 participates in a previously unrecognized step of the membrane repair process: triggered by the local influx of Ca2+, AnxA5 proteins bind to torn membrane edges and form a 2D array, which prevents wound expansion and promotes membrane resealing

    Phosphatidylserine targeting for diagnosis and treatment of human diseases

    Get PDF
    Cells are able to execute apoptosis by activating series of specific biochemical reactions. One of the most prominent characteristics of cell death is the externalization of phosphatidylserine (PS), which in healthy cells resides predominantly in the inner leaflet of the plasma membrane. These features have made PS-externalization a well-explored phenomenon to image cell death for diagnostic purposes. In addition, it was demonstrated that under certain conditions viable cells express PS at their surface such as endothelial cells of tumor blood vessels, stressed tumor cells and hypoxic cardiomyocytes. Hence, PS has become a potential target for therapeutic strategies aiming at Targeted Drug Delivery. In this review we highlight the biomarker PS and various PS-binding compounds that have been employed to target PS for diagnostic purposes. We emphasize the 35 kD human protein annexin A5, that has been developed as a Molecular Imaging agent to measure cell death in vitro, and non-invasively in vivo in animal models and in patients with cardiovascular diseases and cancer. Recently focus has shifted from diagnostic towards therapeutic applications employing annexin A5 in strategies to deliver drugs to cells that express PS at their surface

    High-speed AFM height spectroscopy reveals µs-dynamics of unlabeled biomolecules

    Get PDF
    Dynamics are fundamental to the functions of biomolecules and can occur on a wide range of time and length scales. Here we develop and apply high-speed AFM height spectroscopy (HS-AFM-HS), a technique whereby we monitor the sensing of a HS-AFM tip at a fixed position to directly detect the motions of unlabeled molecules underneath. This gives Angstrom spatial and microsecond temporal resolutions. In conjunction with HS-AFM imaging modes to precisely locate areas of interest, HS-AFM-HS measures simultaneously surface concentrations, diffusion coefficients and oligomer sizes of annexin-V on model membranes to decipher key kinetics allowing us to describe the entire annexin-V membrane-association and self-assembly process in great detail and quantitatively. This work displays how HS-AFM-HS can assess the dynamics of unlabeled bio-molecules over several orders of magnitude and separate the various dynamic components spatiotemporally

    Trimers, dimers of trimers, and trimers of trimers are common building blocks of annexin A5 two-dimensional crystals

    No full text
    Annexin A5 is a member of a family of homologous proteins sharing the ability to bind to negatively charged phospholipid membranes in a Ca2+-dependent manner. Annexin A5, as well as other annexins, self-assembles into two-dimensional (2D) ordered arrays upon binding to membranes, a property that has been proposed to have functional implications. Electron microscopy and atomic force microscopy experiments have revealed that annexin A5 forms two types of 2D crystals-with either p6 or p3 symmetry-that are both based on annexin trimers, In this study, we describe three other crystal forms that coexist with the p6 crystals. All crystal forms are made of the same building blocks, namely, dimers of trimers and trimers of trimers, A mechanistic model of the formation of the annexin AS 2D crystals is proposed. (C) 2001 Academic Press

    The S-layer protein of Lactobacillus acidophilus ATCC 4356 : identification and characterisation of domains responsible for S-protein assembly and cell wall binding

    No full text
    Lactobacillus acidophilus, like many other bacteria, harbors a surface layer consisting of a protein (SA-protein) of 43 kDa. SA-protein could be readily extracted and crystallized in vitro into large crystalline patches on lipid monolayers with a net negative charge but not on lipids with a net neutral charge. Reconstruction of the S-layer from crystals grown on dioleoylphosphatidylserine indicated an oblique lattice with unit cell dimensions (a = 118 Å; b = 53 Å, and γ = 102°) resembling those determined for the S-layer of Lactobacillus helveticus ATCC 12046. Sequence comparison of SA-protein with S-proteins from L. helveticus, Lactobacillus crispatus and the S-proteins encoded by the silent S-protein genes from L. acidophilus and L. crispatus suggested the presence of two domains, one comprising the N-terminal two-thirds (SAN), and another made up of the C-terminal one-third (SAC) of SA-protein. The sequence of the N-terminal domains is variable, while that of the C-terminal domain is highly conserved in the S-proteins of these organisms and contains a tandem repeat. Proteolytic digestion of SA-protein showed that SAN was protease-resistant, suggesting a compact structure. SAC was rapidly degraded by proteases and therefore probably has a more accessible structure. DNA sequences encoding SAN or Green Fluorescent Protein fused to SAC (GFP-SAC) were efficiently expressed in Escherichia coli. Purified SAN could crystallize into mono and multi-layered crystals with the same lattice parameters as those found for authentic SA-protein. A calculated SA-protein minus SAN density-difference map revealed the probable location, in projection, of the SAC domain, which is missing from the truncated SAN peptide. The GFP-SAC fusion product was shown to bind to the surface of L. acidophilus, L. helveticus and L. crispatus cells from which the S-layer had been removed, but not to non-stripped cells or to Lactobacillus casei. © 2001 Academic Press. Chemicals/CAS: 1,2-dioleoylphosphatidylserine, 70614-14-1; Bacterial Proteins; Membrane Glycoproteins; Membrane Proteins; Peptide Fragments; Phosphatidylserines; Recombinant Fusion Proteins; Solutions; surface array protein, bacteria; Trypsin, EC 3.4.21.
    corecore