652 research outputs found

    Structural analysis of MDM2 RING separates degradation from regulation of p53 transcription activity

    Get PDF
    MDM2–MDMX complexes bind the p53 tumor-suppressor protein, inhibiting p53's transcriptional activity and targeting p53 for proteasomal degradation. Inhibitors that disrupt binding between p53 and MDM2 efficiently activate a p53 response, but their use in the treatment of cancers that retain wild-type p53 may be limited by on-target toxicities due to p53 activation in normal tissue. Guided by a novel crystal structure of the MDM2–MDMX–E2(UbcH5B)–ubiquitin complex, we designed MDM2 mutants that prevent E2–ubiquitin binding without altering the RING-domain structure. These mutants lack MDM2's E3 activity but retain the ability to limit p53′s transcriptional activity and allow cell proliferation. Cells expressing these mutants respond more quickly to cellular stress than cells expressing wild-type MDM2, but basal p53 control is maintained. Targeting the MDM2 E3-ligase activity could therefore widen the therapeutic window of p53 activation in tumors

    'Education, education, education' : legal, moral and clinical

    Get PDF
    This article brings together Professor Donald Nicolson's intellectual interest in professional legal ethics and his long-standing involvement with law clinics both as an advisor at the University of Cape Town and Director of the University of Bristol Law Clinic and the University of Strathclyde Law Clinic. In this article he looks at how legal education may help start this process of character development, arguing that the best means is through student involvement in voluntary law clinics. And here he builds upon his recent article which argues for voluntary, community service oriented law clinics over those which emphasise the education of students

    The degradation of p53 and its major E3 ligase Mdm2 is differentially dependent on the proteasomal ubiquitin receptor S5a.

    Get PDF
    p53 and its major E3 ligase Mdm2 are both ubiquitinated and targeted to the proteasome for degradation. Despite the importance of this in regulating the p53 pathway, little is known about the mechanisms of proteasomal recognition of ubiquitinated p53 and Mdm2. In this study, we show that knockdown of the proteasomal ubiquitin receptor S5a/PSMD4/Rpn10 inhibits p53 protein degradation and results in the accumulation of ubiquitinated p53. Overexpression of a dominant-negative deletion of S5a lacking its ubiquitin-interacting motifs (UIM)s, but which can be incorporated into the proteasome, also causes the stabilization of p53. Furthermore, small-interferring RNA (siRNA) rescue experiments confirm that the UIMs of S5a are required for the maintenance of low p53 levels. These observations indicate that S5a participates in the recognition of ubiquitinated p53 by the proteasome. In contrast, targeting S5a has no effect on the rate of degradation of Mdm2, indicating that proteasomal recognition of Mdm2 can be mediated by an S5a-independent pathway. S5a knockdown results in an increase in the transcriptional activity of p53. The selective stabilization of p53 and not Mdm2 provides a mechanism for p53 activation. Depletion of S5a causes a p53-dependent decrease in cell proliferation, demonstrating that p53 can have a dominant role in the response to targeting S5a. This study provides evidence for alternative pathways of proteasomal recognition of p53 and Mdm2. Differences in recognition by the proteasome could provide a means to modulate the relative stability of p53 and Mdm2 in response to cellular signals. In addition, they could be exploited for p53-activating therapies. This work shows that the degradation of proteins by the proteasome can be selectively dependent on S5a in human cells, and that this selectivity can extend to an E3 ubiquitin ligase and its substrate

    Inhibition of B16 melanoma growth and metastasis in C57BL mice by vaccination with a syngeneic endothelial cell line

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Key role of angiogenesis in tumor growth and metastasis based on accumulating evidence and recent progress of immunotherapy have led us to investigate vaccine therapy targeting tumor angiogenesis.</p> <p>Methods</p> <p>C57BL/6J mice were vaccinated with a syngeneic endothelial cell line Tpit/E by subcutaneous injection once a week. Prior to ninth vaccination, the mice were challenged with B16/F10 melanoma cells by subcutaneous inoculation on the back for the tumor growth model or by tail venous injection for the lung metastasis model. Development of subcutaneous tumor and lung metastasis was monitored by computed tomography scanning, which enabled accurate evaluation with the minimized sacrifice of mice.</p> <p>Results</p> <p>Vaccination with Tpit/E cells inhibited subcutaneous tumor growth and appearance of lung metastasis compared to control. Survival period was elongated in the Tpit/E vaccination in both of the two models. We also obtained hybridomas secreting specific antibodies to Tpit/E cells from a mouse vaccinated with the cells, indicating that specific immune response to the syngeneic endothelial cells was elicited.</p> <p>Conclusion</p> <p>These results suggest that vaccination with an autologous endothelial cell line may be effective against melanoma.</p

    Temporal drag: transdisciplinarity and the 'case' of psychosocial studies

    Get PDF
    Psychosocial studies is a putatively ‘new’ or emerging field concerned with the irreducible relation between psychic and social life. Genealogically, it attempts to re-suture a tentative relation between mind and social world, individual and mass, internality and externality, norm and subject, and the human and non-human, through gathering up and re-animating largely forgotten debates that have played out across a range of other disciplinary spaces. If, as I argue, the central tenets, concepts and questions for psychosocial studies emerge out of a re-appropriation of what have become anachronistic or ‘useless’ concepts in other fields – ‘the unconscious’, for instance, in the discipline of psychology – then we need to think about transdisciplinarity not just in spatial terms (that is, in terms of the movement across disciplinary borders) but also in temporal terms. This may involve engaging with theoretical ‘embarrassments’, one of which – the notion of ‘psychic reality’ – I explore here

    A Theoretical Exploration of Birhythmicity in the p53-Mdm2 Network

    Get PDF
    Experimental observations performed in the p53-Mdm2 network, one of the key protein modules involved in the control of proliferation of abnormal cells in mammals, revealed the existence of two frequencies of oscillations of p53 and Mdm2 in irradiated cells depending on the irradiation dose. These observations raised the question of the existence of birhythmicity, i.e. the coexistence of two oscillatory regimes for the same external conditions, in the p53-Mdm2 network which would be at the origin of these two distinct frequencies. A theoretical answer has been recently suggested by Ouattara, Abou-Jaoudé and Kaufman who proposed a 3-dimensional differential model showing birhythmicity to reproduce the two frequencies experimentally observed. The aim of this work is to analyze the mechanisms at the origin of the birhythmic behavior through a theoretical analysis of this differential model. To do so, we reduced this model, in a first step, into a 3-dimensional piecewise linear differential model where the Hill functions have been approximated by step functions, and, in a second step, into a 2-dimensional piecewise linear differential model by setting one autonomous variable as a constant in each domain of the phase space. We find that two features related to the phase space structure of the system are at the origin of the birhythmic behavior: the existence of two embedded cycles in the transition graph of the reduced models; the presence of a bypass in the orbit of the large amplitude oscillatory regime of low frequency. Based on this analysis, an experimental strategy is proposed to test the existence of birhythmicity in the p53-Mdm2 network. From a methodological point of view, this approach greatly facilitates the computational analysis of complex oscillatory behavior and could represent a valuable tool to explore mathematical models of biological rhythms showing sufficiently steep nonlinearities

    Sunitinib and other targeted therapies for renal cell carcinoma

    Get PDF
    Targeted therapy has radically altered the way metastatic renal cancer is treated. Six drugs are now licensed in this setting, with several other agents under evaluation. Sunitinib is currently the most widely used in the first line setting with impressive efficacy and an established toxicity profile. However, as further randomised studies report and as newer drugs become available this may change. In this review, we address our current understanding of targeted therapy in renal cancer. We also discuss areas in which our knowledge is incomplete, including the identification of correlative biomarkers and mechanisms of drug resistance. Finally, we will describe the major areas of clinical research that will report over the next few years
    corecore