132 research outputs found

    One-year timeline kinetics of cytokine-mediated cellular immunity in dogs vaccinated against visceral leishmaniasis

    Get PDF
    BACKGROUND: The main control strategy for visceral leishmaniasis in Brazil has been based on the elimination of seropositive dogs, although this is not widely accepted. In this context, the use of a long-lasting protective vaccine against canine visceral leishmaniasis (CVL) has been highly expected. The aim of this work was to determine the timeline kinetics of the cytokine microenvironment derived from circulating leukocytes as supportive immunological biomarkers triggered by Leishmune® vaccine. Cross-sectional kinetic analysis of cellular immunity cytokines was carried out at three times (1, 6 and 12 months) after primovaccination with Leishmune®. In vitro short-term whole blood cultures were stimulated with Leishmania infantum soluble antigen (SLAg). The secreted cytokine signatures and their major sources were determined. RESULTS: At six months after vaccination, Leishmune® induced an increase in IL-8, IFN-γ, IL-17a and TNF-α levels and a decrease in IL-10. Cytokine signature analysis revealed a shift in the microenvironment towards a pro-inflammatory profile mediated by IL-8 and IFN-γ. Both, CD4(+) (↑TNF-α(+) and ↑IFN-γ (+)) and CD8(+) (↑IL-17a and ↓IL-4) T-cells contributed to the acquired immune responses observed after stimulation with SLAg. CONCLUSIONS: The changes observed in the cytokine profile suggested that Leishmune® was able to induce an effective response at six months after primovaccination. After one year, it returned to baseline suggesting the need of additional boosting

    Influence of Clinical Status and Parasite Load on Erythropoiesis and Leucopoiesis in Dogs Naturally Infected with Leishmania (Leishmania) chagasi

    Get PDF
    Background: The bone marrow is considered to be an important storage of parasites in Leishmania-infected dogs, although little is known about cellular genesis in this organ during canine visceral leishmaniasis (CVL). Methodology/Principal Findings: The aim of the present study was to evaluate changes in erythropoiesis and leucopoiesis in bone marrow aspirates from dogs naturally infected with Leishmania chagasi and presenting different clinical statuses and bone marrow parasite densities. The evolution of CVL from asymptomatic to symptomatic status was accompanied by increasing parasite density in the bone marrow. The impact of bone marrow parasite density on cellularity was similar in dogs at different clinical stages, with animals in the high parasite density group. Erythroid and eosinophilic hypoplasia, proliferation of neutrophilic precursor cells and significant increases in lymphocytes and plasma cell numbers were the major alterations observed. Differential bone marrow cell counts revealed increases in the myeloid:erythroid ratio associated to increased numbers of granulopoietic cells in the different clinical groups compared with non-infected dogs. Conclusions: Analysis of the data obtained indicated that the assessment of bone marrow constitutes an additional and useful tool by which to elaborate a prognosis for CVL

    Immunophenotypic features of tumor infiltrating lymphocytes from mammary carcinomas in female dogs associated with prognostic factors and survival rates

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The immune system plays an important role in the multifactorial biologic system during the development of neoplasias. However, the involvement of the inflammatory response in the promotion/control of malignant cells is still controversial, and the cell subsets and the mechanisms involved are poorly investigated. The goal of this study was to characterize the clinical-pathological status and the immunophenotyping profile of tumor infiltrating lymphocytes and their association with the animal survival rates in canine mammary carcinomas.</p> <p>Methods</p> <p>Fifty-one animals with mammary carcinomas, classified as carcinomas in mixed tumors-MC-BMT = 31 and carcinomas-MC = 20 were submitted to systematic clinical-pathological analysis (tumor size; presence of lymph node and pulmonary metastasis; clinical stage; histological grade; inflammatory distribution and intensity as well as the lymphocytic infiltrate intensity) and survival rates. Twenty-four animals (MC-BMT = 16 and MC = 8) were elected to the immunophenotypic study performed by flow cytometry.</p> <p>Results</p> <p>Data analysis demonstrated that clinical stage II-IV and histological grade was I more frequent in MC-BMT as compared to MC. Univariate analysis demonstrated that the intensity of inflammation (moderate/intense) and the proportion of CD4<sup>+ </sup>(≥ 66.7%) or CD8<sup>+ </sup>T-cells (<33.3%) were not associated with worse survival rate. Multivariate analysis demonstrated that only lymphocytic infiltrate intensity ≥ 600 (<it>P </it>= 0.02) remained as independent prognostic factor. Despite the clinical manifestation, the lymphocytes represented the predominant cell type in the tumor infiltrate. The percentage of T-cells was higher in animals with MC-BMT without metastasis, while the percentage of B-lymphocytes was greater in animals with metastasized MC-BMT (<it>P </it>< 0.05). The relative percentage of CD4<sup>+ </sup>T-cells was significantly greater in metastasized tumors (both MC-BMT and MC), (<it>P </it>< 0.05) while the proportion of CD8<sup>+ </sup>T-cells was higher in MC-BMT without metastasis. Consequently, the CD4<sup>+</sup>/CD8<sup>+ </sup>ratio was significantly increased in both groups with metastasis. Regardless of the tumor type, the animals with high proportions of CD4<sup>+ </sup>and low CD8<sup>+ </sup>T-cells had decreased survival rates.</p> <p>Conclusion</p> <p>The intensity of lymphocytic infiltrate and probably the relative abundance of the CD4<sup>+ </sup>and CD8<sup>+ </sup>T-lymphocytes may represent important survival prognostic biomarkers for canine mammary carcinomas.</p

    Regulatory T Cells Phenotype in Different Clinical Forms of Chagas' Disease

    Get PDF
    CD25High CD4+ regulatory T cells (Treg cells) have been described as key players in immune regulation, preventing infection-induced immune pathology and limiting collateral tissue damage caused by vigorous anti-parasite immune response. In this review, we summarize data obtained by the investigation of Treg cells in different clinical forms of Chagas' disease. Ex vivo immunophenotyping of whole blood, as well as after stimulation with Trypanosoma cruzi antigens, demonstrated that individuals in the indeterminate (IND) clinical form of the disease have a higher frequency of Treg cells, suggesting that an expansion of those cells could be beneficial, possibly by limiting strong cytotoxic activity and tissue damage. Additional analysis demonstrated an activated status of Treg cells based on low expression of CD62L and high expression of CD40L, CD69, and CD54 by cells from all chagasic patients after T. cruzi antigenic stimulation. Moreover, there was an increase in the frequency of the population of Foxp3+ CD25HighCD4+ cells that was also IL-10+ in the IND group, whereas in the cardiac (CARD) group, there was an increase in the percentage of Foxp3+ CD25High CD4+ cells that expressed CTLA-4. These data suggest that IL-10 produced by Treg cells is effective in controlling disease development in IND patients. However, in CARD patients, the same regulatory mechanism, mediated by IL-10 and CTLA-4 expression is unlikely to be sufficient to control the progression of the disease. These data suggest that Treg cells may play an important role in controlling the immune response in Chagas' disease and the balance between regulatory and effector T cells may be important for the progression and development of the disease. Additional detailed analysis of the mechanisms on how these cells are activated and exert their function will certainly give insights for the rational design of procedure to achieve the appropriate balance between protection and pathology during parasite infections

    Profile of Central and Effector Memory T Cells in the Progression of Chronic Human Chagas Disease

    Get PDF
    Chagas disease is a parasitic infection caused by protozoan Trypanosoma cruzi that affects approximately 11 million people in Latin America. The involvement of the host's immune response on the development of severe forms of Chagas disease has not been fully elucidated. Studies on the immune response against T. cruzi infection show that the immunoregulatory mechanisms are necessary to prevent the deleterious effect of excessive immune response stimulation and consequently the fatal outcome of the disease. A recall response against parasite antigens observed in in vitro peripheral blood cell culture clearly demonstrates that memory response is generated during infection. Memory T cells are heterogeneous and differ in both the ability to migrate and exert their effector function. This heterogeneity is reflected in the definition of central (TCM) and effector memory (TEM) T cells. Our results suggest that a balance between regulatory and effectors T cells may be important for the progression and development of the disease. Furthermore, the high percentage of central memory CD4+ T cells in indeterminate patients after stimulation suggests that these cells may modulate host's inflammatory response by controlling cell migration to tissues and their effector role during chronic phase of the disease
    corecore