114 research outputs found

    Elevated levels of 8-OHdG and PARK7/DJ-1 in peri-implantitis mucosa

    Get PDF
    BackgroundReactive oxygen species contribute to periodontal tissue homeostasis under control of anti-oxidative responses. Disruption in this balance induces severe inflammation and extended tissue degradation.PurposeAim of this study was to identify the expression levels of nuclear factor, erythroid 2 like 2 (NFE2L2/NRF2), Parkinsonism associated deglycase (PARK7/DJ-1), kelch-like ECH associated protein 1 (KEAP1), and 8-hydroxy-deoxyguanosine (8-OHdG) in peri-implant mucosal tissues affected by peri-implantitis, and to compare the levels to those of periodontally diseased and healthy tissue samples.MethodsTissue biopsies were collected from systemically healthy, non-smoking 12 peri-implantitis patients, 13 periodontitis patients, and 13 periodontally healthy controls. Expression levels of NFE2L2/NRF2, PARK7/DJ-1, KEAP1, and 8-OHdG in tissue samples were analyzed immunohistochemically. Statistical analysis was performed by one-way ANOVA with Tukey's HSD test.ResultsInflammatory cell infiltration in the connective tissue and loss of architecture in the spinous layer of the epithelium were prominent in peri-implantitis. Proportions of 8-OHdG and PARK7/DJ-1 expressing cells were elevated in both peri-implantitis (P = .025 for 8-OHdG and P = .014 for PARK7/DJ-1) and periodontitis (P = .038 for 8-OHdG and P = .012 for PARK7/DJ-1) groups in comparison with controls. Staining intensities of 8-OHdG and PARK7/DJ-1 were higher in the periodontitis and peri-implantitis groups than in the control (P < .01) groups. There was no difference in the expression levels of NFE2L2/NRF2 between the groups. KEAP1 was not observed in any tissue sample.ConclusionsPeri-implantitis is characterized by severe inflammation and architectural changes in the epithelium and connective tissue. The expressions of 8-OHdG and PARK7/DJ-1 are elevated in both peri-implantitis and periodontitis

    Flow-Dependent Mass Transfer May Trigger Endothelial Signaling Cascades

    Get PDF
    It is well known that fluid mechanical forces directly impact endothelial signaling pathways. But while this general observation is clear, less apparent are the underlying mechanisms that initiate these critical signaling processes. This is because fluid mechanical forces can offer a direct mechanical input to possible mechanotransducers as well as alter critical mass transport characteristics (i.e., concentration gradients) of a host of chemical stimuli present in the blood stream. However, it has recently been accepted that mechanotransduction (direct mechanical force input), and not mass transfer, is the fundamental mechanism for many hemodynamic force-modulated endothelial signaling pathways and their downstream gene products. This conclusion has been largely based, indirectly, on accepted criteria that correlate signaling behavior and shear rate and shear stress, relative to changes in viscosity. However, in this work, we investigate the negative control for these criteria. Here we computationally and experimentally subject mass-transfer limited systems, independent of mechanotransduction, to the purported criteria. The results showed that the negative control (mass-transfer limited system) produced the same trends that have been used to identify mechanotransduction-dominant systems. Thus, the widely used viscosity-related shear stress and shear rate criteria are insufficient in determining mechanotransduction-dominant systems. Thus, research should continue to consider the importance of mass transfer in triggering signaling cascades

    Cancer Biomarker Discovery: The Entropic Hallmark

    Get PDF
    Background: It is a commonly accepted belief that cancer cells modify their transcriptional state during the progression of the disease. We propose that the progression of cancer cells towards malignant phenotypes can be efficiently tracked using high-throughput technologies that follow the gradual changes observed in the gene expression profiles by employing Shannon's mathematical theory of communication. Methods based on Information Theory can then quantify the divergence of cancer cells' transcriptional profiles from those of normally appearing cells of the originating tissues. The relevance of the proposed methods can be evaluated using microarray datasets available in the public domain but the method is in principle applicable to other high-throughput methods. Methodology/Principal Findings: Using melanoma and prostate cancer datasets we illustrate how it is possible to employ Shannon Entropy and the Jensen-Shannon divergence to trace the transcriptional changes progression of the disease. We establish how the variations of these two measures correlate with established biomarkers of cancer progression. The Information Theory measures allow us to identify novel biomarkers for both progressive and relatively more sudden transcriptional changes leading to malignant phenotypes. At the same time, the methodology was able to validate a large number of genes and processes that seem to be implicated in the progression of melanoma and prostate cancer. Conclusions/Significance: We thus present a quantitative guiding rule, a new unifying hallmark of cancer: the cancer cell's transcriptome changes lead to measurable observed transitions of Normalized Shannon Entropy values (as measured by high-throughput technologies). At the same time, tumor cells increment their divergence from the normal tissue profile increasing their disorder via creation of states that we might not directly measure. This unifying hallmark allows, via the the Jensen-Shannon divergence, to identify the arrow of time of the processes from the gene expression profiles, and helps to map the phenotypical and molecular hallmarks of specific cancer subtypes. The deep mathematical basis of the approach allows us to suggest that this principle is, hopefully, of general applicability for other diseases

    7th Drug hypersensitivity meeting: part two

    Get PDF
    No abstract availabl

    Odontogenic tumours in Istanbul: 527 cases

    No full text
    We retrieved and analysed the records of 527 odontogenic tumours from a total of 62,565 cases in the department of tumour pathology in the Institute of Oncology, University of Istanbul, from 1971 to 2003. Of these 527 tumours, 521 were benign and 6 were malignant. The most common lesions were ameloblastomas (n = 133) followed by odontomas (n = 109), odontogenic myxomas (n = 83) and others

    Adenomatoid odontogenic tumor: A report of an unusual maxillary lesion

    No full text
    Adenomatoid odontogenic tumor is an odontogenic tumor that appears in the anterior portion of the jaws and more frequently, in the anterior maxilla usually in association with the crowns of inclused teeth. A case report of adenomatoid odontogenic tumor with an associated impacted right maxillary first premolar is presented. Under general anesthesia the lesion and the impacted tooth were removed. There was no recurrence at the 1-year follow-up
    corecore