29 research outputs found

    Large-scale mapping of human protein–protein interactions by mass spectrometry

    Get PDF
    Mapping protein–protein interactions is an invaluable tool for understanding protein function. Here, we report the first large-scale study of protein–protein interactions in human cells using a mass spectrometry-based approach. The study maps protein interactions for 338 bait proteins that were selected based on known or suspected disease and functional associations. Large-scale immunoprecipitation of Flag-tagged versions of these proteins followed by LC-ESI-MS/MS analysis resulted in the identification of 24 540 potential protein interactions. False positives and redundant hits were filtered out using empirical criteria and a calculated interaction confidence score, producing a data set of 6463 interactions between 2235 distinct proteins. This data set was further cross-validated using previously published and predicted human protein interactions. In-depth mining of the data set shows that it represents a valuable source of novel protein–protein interactions with relevance to human diseases. In addition, via our preliminary analysis, we report many novel protein interactions and pathway associations

    Lanthanide-Containing Polymer Nanoparticles for Biological Tagging Applications: Nonspecific Endocytosis and Cell Adhesion

    No full text
    International audienceWe describe the synthesis and characterization of element-encoded polystyrene nanoparticleswith diameters on the order of 100 nm and a narrow size distribution. Individual particles contain ca. 103chelated lanthanide ions, of either a single element or a mixture of elements. These particles were effectivelyinternalized by nonspecific endocytosis into three cell lines associated with human leukemia. Using anassay based upon ICP-MS detection, we could monitor quantitatively cell adhesion induced by celldifferentiation of THP-1 cells in response to phorbol ester stimulation (PMA) in single cell type or mixedcultures

    Clickable and High-Sensitivity Metal-Containing Tags for Mass Cytometry

    No full text
    Mass cytometry is a highly multiplexed single-cell analysis platform that uses metal-tagged reagents to identify multiple cellular biomarkers. The current metal-tagged reagent preparation employs thiol–maleimide chemistry to covalently couple maleimide-functionalized metal-chelating polymers (MCPs) with antibodies (Abs), a process that requires partial reduction of the Ab to form reactive thiol groups. However, some classes of Abs (for example, IgM) as well as biomolecules lacking cysteine residues have been challenging to label using this method. This inherent limitation led us to develop a new conjugation strategy for labeling a wide range of biomolecules and affinity reagents. In this report, we present a metal tagging approach using a new class of azide- or transcyclooctene-terminated MCPs with copper­(I)-free strain-promoted alkyne–azide cycloaddition or tetrazine–alkene click chemistry reactions, in which biomolecules with -NH<sub>2</sub> functional groups are selectively activated with a dibenzocyclooctyne or tetrazine moiety, respectively. This approach enabled us to generate highly sensitive and specific metal-tagged IgGs, IgMs, small peptides, and lectins for applications in immunophenotyping and glycobiology. We also created dual-tagged reagents for simultaneous detection of markers by immunofluorescence, mass cytometry, and imaging mass cytometry using a two-step conjugation process. The Helios mass cytometer was used to test the functionality of reagents on suspension human leukemia cell lines and primary cells. The dual-tagged Abs, metal-tagged lectins, and phalloidin staining reagent were used to visualize target proteins and glycans on adherent cell lines and frozen/FFPE tissue sections using the Hyperion Imaging System. In some instances, reagents produced by click conjugation showed superior sensitivity and specificity compared to those of reagents produced by thiol-maleimide chemistry. In general, the click chemistry-based conjugation with new MCPs could be instrumental in developing a wide range of highly sensitive metal-containing reagents for proteomics and glycomics applications

    Dual-Purpose Polymer Labels for Fluorescent and Mass Cytometric Affinity Bioassays

    No full text
    We describe the synthesis and characterization of a family of poly­(<i>N</i>-alkylacrylamide) polymers carrying 2–6 fluorescent dye molecules, ∌70 pendant DTPA (diethylenetriaminepentaacetic acid) groups, and an orthogonal maleimide end-group for covalent attachment to an antibody (Ab). These dual-purpose labels were designed for use in multiplexed immunoassays based on both mass cytometry and fluorescent flow cytometry. A challenge in the polymer synthesis was finding conditions for attaching a sufficient number of dye molecules to each polymer chain. Although attachment of a terminal maleimide to the polymers was not as efficient as anticipated, the end-functional polymers were still effective in labeling Abs. Secondary goat antimouse IgG was labeled with the four dual-label polymers as well as a control polymer, and while the resultant antibody-polymer conjugates showed positive performance in mass cytometric and fluorescent assays, some trials showed problems such as low signal and nonspecific adsorption. Four primary antibody conjugates were prepared and used to stain cells in 4-plex assays. The results of both primary assays are bittersweet in that the CD3-FITC and CD45-DyLight 649 conjugates performed well, while the CD13-DyLight 405 and the CD38-DyLight 549 conjugates did not

    Metal-Chelating Polymers by Anionic Ring-Opening Polymerization and Their Use in Quantitative Mass Cytometry

    No full text
    Metal-chelating polymers (MCPs) are important reagents for multiplexed immunoassays based on mass cytometry. The role of the polymer is to carry multiple copies of individual metal isotopes, typically as lanthanide ions, and to provide a reactive functionality for convenient attachment to a monoclonal antibody (mAb). For this application, the optimum combination of chain length, backbone structure, end group, pendant groups, and synthesis strategy has yet to be determined. Here we describe the synthesis of a new type of MCP based on anionic ring-opening polymerization of an activated cyclopropane (the diallyl ester of 1,1-cyclopropane dicarboxylic acid) using a combination of 2-furanmethanethiol and a phosphazene base as the initiator. This reaction takes place with rigorous control over molecular weight, yielding a polymer with a narrow molecular weight distribution, reactive pendant groups for introducing a metal chelator, and a functional end group with orthogonal reactivity for attaching the polymer to the mAbs. Following the ring-opening polymerization, a two-step transformation introduced diethylenetriaminepentaacetic acid (DTPA) chelating groups on each pendant group. The polymers were characterized by NMR, size exclusion chromatography (SEC), and thermogravimetric analysis (TGA). The binding properties toward Gd<sup>3+</sup> as a prototypical lanthanide (Ln) ion were also studied by isothermal titration calorimetry (ITC). Attachment to a mAb involves a Diels–Alder reaction of the terminal furan with a bismaleimide, followed by a Michael addition of a thiol on the mAb, generated by mild reduction of a disulfide bond in the hinge region. Polymer samples with a number average degree of polymerization of 35, with a binding capacity of 49.5 ± 6 Ln<sup>3+</sup> ions per chain, were loaded with 10 different types of Ln ions and conjugated to 10 different mAbs. A suite of metal-tagged Abs was tested by mass cytometry in a 10-plex single cell analysis of human adult peripheral blood, allowing us to quantify the antibody binding capacity of 10 different cell surface antigens associated with specific cell types
    corecore