117 research outputs found

    Structure and magnetic properties of nanocrystalline Fe-Mo alloys prepared by mechanosynthesis

    Get PDF
    Nanocrystalline samples of Fe8 0 Mo 20 and Fe50 Mo 50 alloys were prepared by the mechanical milling method. The structure, lattice parameters, and crystallite size were determined by the X -ray diffraction . The magnetic properties of the milled products were determined by the M ossbauer spectroscopy . It was observed that in the case of the Fe80 Mo 20 alloy a solid solutio n of Mo in Fe was formed with the lattice parameters of Fe increasing from 0.28659 nm to 0.29240 nm and the crystalli te size decreasing from 250 nm to 20 nm. In the case of the Fe50 Mo 50 alloy there were no clear changes in values of the lattice parameters of Fe and Mo during the millin g pro cess, but the crystallite size decreased from 200 nm to 15 nm. M ossbauer spectra revealed different magnetic phases in the mechanosynthesized Fe-Mo samples. In the case of the Fe80 Mo 20 alloy , the spectrum for the milled mi xture indicated the formation of a solid solution. In contrast, for the Fe50 Mo50 the spectrum indicated the disappeara ce of the ferromagnetic phase

    Strukture and Mossbauer spectroscopy studies of multiferroic mechanically activated aurivillius compounds

    Get PDF
    X-ray di raction and 57Fe Mössbauer spectroscopy were applied as complementary methods to investigate the structure and hyper ne interactions of the Aurivillius compounds prepared by mechanical activation and subsequent heat treatment. Preliminary milling of precursors enhanced the di usion process and pure Aurivillius compounds were obtained at lower temperature as compared with conventional solid-state sintering technology (lower at least by 50 K). All the investigated Aurivillius compounds are paramagnetic materials at room temperature

    A Study of Point Defects in the B2-Phase Region of the Fe-Al System by Mossbauer Spectroscopy

    Get PDF
    In this work, we employed the Mössbauer spectroscopy and X-ray powder diffraction in a study of point defect formation in intermetallic phases of the B2 structure of the Fe{Al system as a function of Al concentration. The results are compared with the concentrations of point defect determined from positron annihilation data. In the MÄossbauer effect, two types of samples are investigated: Fe{Al alloys with few additives obtained by induction melting and Al-rich metallic powders produced by the self-decomposition method and intensive grinding of high energy in the electro-magneto-mechanical mill. We present the values of the 57Fe isomer shift and quadrupole splitting for the components describing the point defect in the local environment of a MÄossbauer nuclide. The concentration of the Fe vacancies and Fe atoms substituting Al (Fe{AS) are determined. The results showed that an increase in Al content causes an increase in vacancy and Fe{AS concentration

    Structure and magnetic properties of Bi5Ti3FeO15 ceramics prepared by sintering, mechanical activation and EDAMM process. A comparative study

    Get PDF
    Three different methods were used to obtain Bi5Ti3FeO15 ceramics, i.e. solid-state sintering, mechanical activation (MA) with subsequent thermal treatment, and electrical discharge assisted mechanical milling (EDAMM). The structure and magnetic properties of produced Bi5Ti3FeO15 samples were characterized using X-ray diffraction and Mössbauer spectroscopy. The purest Bi5Ti3FeO15 ceramics was obtained by standard solid-state sintering method. Mechanical milling methods are attractive because the Bi5Ti3FeO15 compound may be formed at lower temperature or without subsequent thermal treatment. In the case of EDAMM process also the time of processing is significantly shorter in comparison with solid-state sintering method. As revealed by Mössbauer spectroscopy, at room temperature the Bi5Ti3FeO15 ceramics produced by various methods is in paramagnetic state

    Aneurysmal Lesions of Patients with Abdominal Aortic Aneurysm Contain Clonally Expanded T Cells

    Get PDF
    Abdominal aortic aneurysm (AAA) is a common disease with often life-threatening consequences. This vascular disorder is responsible for 1-2% of all deaths in men aged 65 years or older. Autoimmunity may be responsible for the pathogenesis of AAA. Although it is well documented that infiltrating T cells are essentially always present in AAA lesions, little is known about their role in the initiation and/or progression of the disease. To determine whether T cells infiltrating AAA lesions contain clonally expanded populations of T cells, we amplified beta-chain TCR transcripts by the nonpalindromic adaptor-PCR/Vbeta-specific PCR and/or Vbeta-specific PCR, followed by cloning and sequencing. We report in this article that aortic abdominal aneurysmal lesions from 8 of 10 patients with AAA contained oligoclonal populations of T cells. Multiple identical copies of beta-chain TCR transcripts were identified in these patients. These clonal expansions are statistically significant. These results demonstrate that alphabeta TCR(+) T lymphocytes infiltrating aneurysmal lesions of patients with AAA have undergone proliferation and clonal expansion in vivo at the site of the aneurysmal lesion, in response to unidentified self- or nonself Ags. This evidence supports the hypothesis that AAA is a specific Ag-driven T cell disease

    Clonally Expanded Alpha-Chain T-Cell Receptor (TCR) Transcripts are Present in Aneurysmal Lesions of Patients With Abdominal Aortic Aneurysm (AAA)

    Get PDF
    Abdominal aortic aneurysm (AAA) is a life-threatening immunological disease responsible for 1 to 2% of all deaths in 65 year old or older individuals. Although mononuclear cell infiltrates have been demonstrated in AAA lesions and autoimmunity may be responsible for the initiation and account for the propagation of the disease, the information available about the pathogenesis of AAA is limited. To examine whether AAA lesions from patients with AAA contain clonally expanded α-chain TCR transcripts, we amplified by the non-palindromic adaptor-PCR (NPA-PCR)/Vα-specific PCR and/or the Vα-specific PCR these α-chain TCR transcripts. The amplified transcripts were cloned and sequenced. Substantial proportions of identical α-chain TCR transcripts were identified in AAA lesions of 4 of 5 patients, demonstrating that clonally expanded T cells are present in these AAA lesions. These results were statistically significant by the bimodal distribution. Three of 5 of these patients were typed by DNA-based HLA-typing and all three expressed DRB1 alleles containing the DRβGln70 amino acid residue that has been demonstrated to be associated with AAA. All three patients exhibited clonally expanded T cells in AAA lesions. Four of the 5 patients with AAA who exhibited clonal expansions of α-chain TCR transcripts, also exhibited clonal expansions of β-chain TCR transcripts in AAA lesions, as we have demonstrated previously (J Immunol 192:4897, 2014). αβ TCR-expressing T cells infiltrating AAA lesions contain T-cell clones which have undergone proliferation and clonal expansion in vivo in response to as yet unidentified specific antigens that may be self or nonself. These results provide additional evidence supporting the hypothesis that AAA is a specific antigen-driven T-cell autoimmune disease

    CNS Expression of B7-H1 Regulates Pro-Inflammatory Cytokine Production and Alters Severity of Theiler's Virus-Induced Demyelinating Disease

    Get PDF
    The CNS is a unique organ due to its limited capacity for immune surveillance. As macrophages of the CNS, microglia represent a population originally known for the ability to assist neuronal stability, are now appreciated for their role in initiating and regulating immune responses in the brain. Theiler's murine encephalomyelitis virus (TMEV)-induced demyelinating disease is a mouse model of multiple sclerosis (MS). In response to TMEV infection in vitro, microglia produce high levels of inflammatory cytokines and chemokines, and are efficient antigen-presenting cells (APCs) for activating CD4+ T cells. However, the regulatory function of microglia and other CNS-infiltrating APCs in response to TMEV in vivo remains unclear. Here we demonstrate that microglia increase expression of proliferating cell nuclear antigen (PCNA), and phenotypically express high levels of major histocompatibility complex (MHC)-Class I and II in response to acute infection with TMEV in SJL/J mice. Microglia increase expression of the inhibitory co-stimulatory molecule, B7-H1 as early as day 5 post-infection, while CNS-infiltrating CD11b+CD11c−CD45HIGH monocytes/macrophages and CD11b+CD11c+CD45HIGH dendritic cells upregulate expression of B7-H1 by day 3 post-infection. Utilizing a neutralizing antibody, we demonstrate that B7-H1 negatively regulates TMEV-specific ex vivo production of interferon (IFN)-γ, interleukin (IL)-17, IL-10, and IL-2 from CD4+ and CD8+ T cells. In vivo blockade of B7-H1 in SJL/J mice significantly exacerbates clinical disease symptoms during the chronic autoimmune stage of TMEV-IDD, but only has minimal effects on viral clearance. Collectively, these results suggest that CNS expression of B7-H1 regulates activation of TMEV-specific T cells, which affects protection against TMEV-IDD

    High diversity of picornaviruses in rats from different continents revealed by deep sequencing

    Get PDF
    Outbreaks of zoonotic diseases in humans and livestock are not uncommon, and an important component in containment of such emerging viral diseases is rapid and reliable diagnostics. Such methods are often PCR-based and hence require the availability of sequence data from the pathogen. Rattus norvegicus (R. norvegicus) is a known reservoir for important zoonotic pathogens. Transmission may be direct via contact with the animal, for example, through exposure to its faecal matter, or indirectly mediated by arthropod vectors. Here we investigated the viral content in rat faecal matter (n=29) collected from two continents by analyzing 2.2 billion next-generation sequencing reads derived from both DNA and RNA. Among other virus families, we found sequences from members of the Picornaviridae to be abundant in the microbiome of all the samples. Here we describe the diversity of the picornavirus-like contigs including near-full-length genomes closely related to the Boone cardiovirus and Theiler's encephalomyelitis virus. From this study, we conclude that picornaviruses within R. norvegicus are more diverse than previously recognized. The virome of R. norvegicus should be investigated further to assess the full potential for zoonotic virus transmission
    • …
    corecore