8 research outputs found

    СКАНИРУЮЩАЯ ТОРОИДАЛЬНО-БИФОКАЛЬНАЯ ЛИНЗОВАЯ АНТЕННАЯ СИСТЕМА ДИАПАЗОНА 57–64 ГГЦ

    Get PDF
    Introduction. Currently, one of the most promising approaches to the development of 5th generation mobile wireless systems is the deployment of heterogeneous networks based on existing LTE cellular systems having both large and small cells. Small, low-cost relay stations equipped with highly directional steerable antenna systems to connect small cells with LTE base station serving macrocell can comprise the main elements of such networks. Objective. Since existing solutions are either too expensive or do not allow the flexible rearrangement of current information transmission lines, the objective of this work is to develop antenna equipment for low-cost relay stations based on simple, steerable antenna systems of millimetre wavelength (57-64 GHz), which allow beamsteering on both azimuth and elevation planes. Methods and materials. The developed steerable, bifocal lens antenna system comprises a specially-shaped lens made of high-molecular-weight polyethylene and integrated with a phased array antenna. A key feature of its design is a wide-angle beamsteering in the azimuth plane and ability to adjust the beam in the elevation plane. The calculation of the lens profiles was carried out by means of an approximation of geometrical optics in Matlab, while the main technical characteristics of the lens antenna system were obtained by direct electromagnetic modelling in CST Microwave Studio. Results. A prototype steerable, bifocal lens-array antenna system has been developed and its characteristics studied. The following technical characteristics are achieved in the 57–64 GHz range: beamsteering in the elevation plane – ±3º; beam-steering in the azimuth plane – ±40º; antenna gain – from 20 to 27.5 dBi for all angles. Conclusion. It is shown that the developed antenna system can be successfully used as a component of the receiving and transmission equipment of small relay stations that transmit information in the frequency range of 57-64 GHz over a distance of 100-300 m.Введение. В настоящее время одним из перспективных подходов к построению систем мобильной радиосвязи пятого поколения является развертывание неоднородных сетей на основе существующих систем сотовой связи LTE с большими и малыми сотами. Основными элементами таких сетей могут стать небольшие дешевые релейные станции, оснащенные высоконаправленными сканирующими антенными системами для связи малых сот с базовой станцией LTE, обслуживающей макросоту. Существующие решения во многом слишком дороги или не позволяют гибко перестраивать используемые линии передачи информации. Цель работы. Разработка антенного оборудования для дешевых релейных станций на основе простых сканирующих антенных систем миллиметрового диапазона длин волн (57…64 ГГц), позволяющих управлять главным лучом в двух плоскостях: азимутальной и угломестной. Материалы и методы. Профиль линзы из высокомолекулярного полиэтилена был рассчитан в приближении геометрической оптики в MATLAB. Основные технические характеристики линзовой антенной системы получены прямым электромагнитным моделированием в CST Microwave Studio, а также в ходе экспериментальных исследований с помощью вспомогательной антенны с высоким коэффициентом усиления, расположенной в дальней зоне. Результаты. Разработан и создан прототип сканирующей бифокальной линзовой антенной системы, представляющий собой линзу специальной формы из высокомолекулярного полиэтилена, интегрированную с плоской фазированной антенной решеткой. В диапазоне рабочих частот 57…64 ГГц достигнуты следующие технические показатели: углы сканирования в угломестной плоскости ±3º, в азимутальной плоскости ±40º, коэффициент усиления антенной системы для всех углов сканирования находится в пределах 20…27.5 дБи. Заключение. Разработанная линзовая антенная система может найти практическое применение в качестве приемо-передающего антенного оборудования небольших релейных станций, осуществляющих передачу информации в частотном диапазоне 57…64 ГГц на расстояния 100…300 м

    Characteristics of the TCRB libraries.

    No full text
    <p>Sources of libraries: upper block <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108658#pone.0108658-Warren1" target="_blank">[6]</a>, middle block <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108658#pone.0108658-Britanova1" target="_blank">[12]</a>, bottom block <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108658#pone.0108658-Mamedov1" target="_blank">[13]</a>–<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108658#pone.0108658-Britanova2" target="_blank">[15]</a>. Values in the middle block are averages within each group.</p><p>Characteristics of the TCRB libraries.</p

    Clonal statistics for an autoimmune patient.

    No full text
    <p>Complementary cumulative clonal frequency distributions (CDF) for an autoimmune patient <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108658#pone.0108658-Mamedov1" target="_blank">[13]</a>–<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108658#pone.0108658-Britanova2" target="_blank">[15]</a> in double log scale: right before the treatment (blue), 10 months after (red), and 25 months after (green). Shaded areas indicate CI95 intervals for clonal frequencies. Dashed lines show power law fits , <i>α</i> = −2.07, <i>α</i> = −0.88 and <i>α</i> = −0.99, respectively. Least square fits performed over the interval for the time point before treatments and for the time points after.</p

    STEERABLE TOROIDAL BIFOCAL LENS-ARRAY ANTENNA IN 57–64 GHZ RANGE

    Get PDF
    Introduction. Currently, one of the most promising approaches to the development of 5th generation mobile wireless systems is the deployment of heterogeneous networks based on existing LTE cellular systems having both large and small cells. Small, low-cost relay stations equipped with highly directional steerable antenna systems to connect small cells with LTE base station serving macrocell can comprise the main elements of such networks. Objective. Since existing solutions are either too expensive or do not allow the flexible rearrangement of current information transmission lines, the objective of this work is to develop antenna equipment for low-cost relay stations based on simple, steerable antenna systems of millimetre wavelength (57-64 GHz), which allow beamsteering on both azimuth and elevation planes. Methods and materials. The developed steerable, bifocal lens antenna system comprises a specially-shaped lens made of high-molecular-weight polyethylene and integrated with a phased array antenna. A key feature of its design is a wide-angle beamsteering in the azimuth plane and ability to adjust the beam in the elevation plane. The calculation of the lens profiles was carried out by means of an approximation of geometrical optics in Matlab, while the main technical characteristics of the lens antenna system were obtained by direct electromagnetic modelling in CST Microwave Studio. Results. A prototype steerable, bifocal lens-array antenna system has been developed and its characteristics studied. The following technical characteristics are achieved in the 57–64 GHz range: beamsteering in the elevation plane – ±3º; beam-steering in the azimuth plane – ±40º; antenna gain – from 20 to 27.5 dBi for all angles. Conclusion. It is shown that the developed antenna system can be successfully used as a component of the receiving and transmission equipment of small relay stations that transmit information in the frequency range of 57-64 GHz over a distance of 100-300 m

    Power law exponents.

    No full text
    <p>Exponents <i>α</i> of power law fits with respective CI95 indicated vs. age of individuals. Blue circles: healthy donors from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108658#pone.0108658-Britanova1" target="_blank">[12]</a>, least square fits performed over the interval or , whichever produced better quality. Red squares: healthy donors from <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108658#pone.0108658-Warren1" target="_blank">[6]</a>, least square fits performed over the interval . Green triangles: autoimmune patient before and after treatment <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108658#pone.0108658-Mamedov1" target="_blank">[13]</a>–<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108658#pone.0108658-Britanova2" target="_blank">[15]</a>, least square fits performed over the interval for the time point before treatments and for the three time points after.</p

    Clonal statistics for healthy donors.

    No full text
    <p><i>Main figure.</i> Representative complementary cumulative clonal frequency distributions (CDF) for three healthy individuals across different age groups <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108658#pone.0108658-Britanova1" target="_blank">[12]</a> in double log scale: male (20 years), female (39 years), and male (66 years). Shaded areas indicate CI95 intervals for clonal frequencies. Black dashed lines show power law dependencies , <i>α</i>≈−1.16, <i>α</i> = −1.16, and <i>α</i> = −1.0, respectively, indicating a good fit of experimental data over two decades (cf. <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108658#pone-0108658-g002" target="_blank">Fig. 2</a> and <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108658#pone-0108658-t002" target="_blank">Table 2</a> for more details). Black solid lines show power law dependencies with the exponents derived from the Poisson abundance model fit (5)–(7). <i>Inset</i>. Parametric approach <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108658#pone.0108658-Sepulveda1" target="_blank">[10]</a>: frequency distribution of clonotypes binned by detected size in double log scale (colors code the same donors as in the main figure) and Poisson abundance method fits (black solid lines).</p

    Power law exponent fits for complementary cumulative clonal frequency distributions and 95% confidence intervals.

    No full text
    <p>Sources of libraries: upper block <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108658#pone.0108658-Warren1" target="_blank">[6]</a>, middle block <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108658#pone.0108658-Britanova1" target="_blank">[12]</a>, bottom block <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108658#pone.0108658-Mamedov1" target="_blank">[13]</a>–<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0108658#pone.0108658-Britanova2" target="_blank">[15]</a>. Values in the middle block are averages within each group.</p><p>Power law exponent fits for complementary cumulative clonal frequency distributions and 95% confidence intervals.</p
    corecore